Skip to main content
Log in

RT-qPCR for the diagnosis of the vesiculovirus Cocal virus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Cocal virus (COCV) is one of the causative agents of vesicular stomatitis, presenting clinical signs indistinguishable from those caused by foot-and-mouth disease virus (FMDV). Therefore, the differentiation of these two viruses via laboratory diagnosis is essential. The objective of this study was to develop and validate a real-time quantitative PCR (RT-qPCR) protocol for the diagnosis of COCV directly from epithelial samples. The method developed had 97% accuracy at 3950 pfu and a repeatability error of 1.29%. RT-qPCR was able to distinguish COCV from other viruses that cause vesicular diseases, an important factor because seroneutralization may produce cross-reactivity between COCV and vesicular stomatitis Alagoas virus (VSAV). No epithelial sample originating from vesicular disease outbreaks between 2014 and 2018 in Brazil was positive for COCV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. McCluskey BJ, Hurd HS, Mumford EL (1999) Review of the 1997 outbreak of vesicular stomatitis in the western United States. J Am Vet Med Assoc 215:1259–1262

    CAS  PubMed  Google Scholar 

  2. PANAFTOSA (2017) Informe Anual - 2016. Salud Pública Veterinaria – Centro Panamericanode Fiebre Aftosa – OPS/OMS

  3. USDA USD of A (2016) U . S . National List of Reportable Animal Diseases (NLRAD) - National Animal Health Reporting System (NAHRS) Operational Manual

  4. Pauszek SJ, del Barrera JC, Goldberg T et al (2011) Genetic and antigenic relationships of vesicular stomatitis viruses from South America. Arch Virol 156:1961–1968. https://doi.org/10.1007/s00705-011-1081-1

    Article  CAS  PubMed  Google Scholar 

  5. Schmitt B (2002) Vesicular stomatitis. Vet Clin North Am Food Anim Pract 18:453–459. https://doi.org/10.1016/S0749-0720(02)00031-2(vii–viii)

    Article  PubMed  Google Scholar 

  6. Abraham G, Banerjee AK (1976) Sequential transcription. Proc Natl Acad Sci 73:1504–1508

    Article  CAS  Google Scholar 

  7. Whelan SP, Wertz GW (1999) The 5’ terminal trailer region of vesicular stomatitis virus contains a position-dependent cis-acting signal for assembly of RNA into infectious particles. J Virol 73:307–315

    Article  CAS  Google Scholar 

  8. Jonkers AH, Shope RE, Aitken TH, Spence L (1964) Cocal virus, a new agent in trinidad related to vesicular stomatitis virus, type Indiana. Am J Vet Res 25:236–242

    CAS  PubMed  Google Scholar 

  9. MAPA (2017) Programa Nacional de Febre Aftosa—PNEFA, Plano Estratégico, 2017–2026, Brasília–DF

  10. ABNT (2017) ISO/IEC 17025:2017- General requirements for the competence of testing and calibration laboratories, p 32p

  11. MAPA (2015) Manual de verificação de desempenho de métodos para diagnóstico molecular de doenças infecciosas na rede nacional de laboratórios agropecuários

  12. Alonso A, Martins MA, Gomes Mda P et al (1991) Development and evaluation of an enzyme-linked immunosorbent assay for detection, typing, and subtyping of vesicular stomatitis virus. J Vet Diagn Invest 3:287–292. https://doi.org/10.1177/104063879100300403

    Article  CAS  PubMed  Google Scholar 

  13. OIE (2016) 2.1.23. Vesicular stomatitis. Man Diagnostic Tests Vaccines Terr Anim 2016

  14. Allende R, Sepulveda L, da Silva AM et al (1992) An enzyme-linked immunosorbent assay for the detection of vesicular stomatitis virus antibodies. Prev Vet Med 14:293–301. https://doi.org/10.1016/0167-5877(92)90025-b

    Article  Google Scholar 

  15. de Oliveira AM, Fonseca AA, Camargos MF et al (2018) Development and validation of rt-qpcr for vesicular stomatitis virus detection (Alagoas vesiculovirus). J Virol Methods 257:7–11. https://doi.org/10.1016/j.jviromet.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  16. Hole K, Velazques-Salinas L, Clavijo A (2010) Improvement and optimization of a multiplex real-time reverse transcription polymerase chain reaction assay for the detection and typing of vesicular stomatitis virus. J Vet Diagn Investig 22:428–433. https://doi.org/10.1177/104063871002200315

    Article  Google Scholar 

  17. Sepúlveda LM, Malirat V, Bergmann IE et al (2007) Rapid diagnosis of vesicular stomatitis virus in Ecuador by the use of polymerase chain reaction. Braz J Microbiol 38:500–506. https://doi.org/10.1590/S1517-83822007000300022

    Article  Google Scholar 

  18. Tolardo AL, de Souza WM, Romeiro MF et al (2016) A real-time reverse transcriptase polymerase chain reaction for detection and quantification of vesiculovirus. Mem Inst Oswaldo Cruz 111:385–390. https://doi.org/10.1590/0074-02760150456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shehata HR, Ragupathy S, Shanmughanandhan D et al (2019) Methods for molecular diagnostic identification of probiotics. J AOAC Int 102:1–5

    Article  Google Scholar 

  20. Untergasser A, Nijveen H, Rao X et al (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:71–74. https://doi.org/10.1093/nar/gkm306

    Article  Google Scholar 

  21. Bielanski A, Algire J, Lalonde A, Nadin-Davis S (2009) Transmission of bovine viral diarrhea virus (BVDV) via in vitro-fertilized embryos to recipients, but not to their offspring. Theriogenology 71:499–508. https://doi.org/10.1016/J.THERIOGENOLOGY.2008.08.015

    Article  CAS  PubMed  Google Scholar 

  22. Hole K, Clavijo A, Pineda LA (2006) Detection and serotype-specific differentiation of vesicular stomatitis virus using a multiplex, real-time, reverse transcription-polymerase chain reaction assay. J Vet Diagn Investig 18:139–146. https://doi.org/10.1177/104063870601800201

    Article  Google Scholar 

  23. Broeders S, Huber I, Grohmann L et al (2014) Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol 37:115–126. https://doi.org/10.1016/J.TIFS.2014.03.008

    Article  CAS  Google Scholar 

  24. de Souza FA, Laguardia-Nascimento M, Gasparini MR et al (2019) A molecular survey using a validated real-time PCR assay finds no evidence of bovine alphaherpesvirus 2 in samples from animals with suspected vesicular disease in Brazil between 2014 and 2017. Arch Virol 164:3095–3098. https://doi.org/10.1007/s00705-019-04413-8

    Article  CAS  PubMed  Google Scholar 

  25. Souza FA, dos Santos Júnior EM, Laguardia-Nascimento M et al (2019) Validation of a real-time PCR assay for detection of swinepox virus. Arch Virol 164:3059–3063. https://doi.org/10.1007/s00705-019-04403-w

    Article  CAS  PubMed  Google Scholar 

  26. Bélec L, Authier J, Eliezer-Vanerot M et al (1998) Myoglobin as a polymerase chain reaction (PCR) inhibitor: a limitation for PCR from skeletal muscle tissue avoided by the use of Thermus thermophilus polymerase. Muscle Nerve 21:1064–1067. https://doi.org/10.1002/(SICI)1097-4598(199808)21:8%3c1064:AID-MUS11%3e3.0.CO;2-U

    Article  PubMed  Google Scholar 

  27. Ochert AS, Boulter AW, Birnbaum W et al (1994) Inhibitory effect of salivary fluids on PCR: potency and removal. Genome Res 3:365–368

    Article  CAS  Google Scholar 

  28. Kralik P, Ricchi M (2017) A Basic Guide to Real Time PCR in Microbial Diagnostics : Definitions, Parameters, and Everything. 8:1–9. https://doi.org/10.3389/fmicb.2017.00108

  29. Nonaka CKV, Fonseca Junior AA, Guedes EO et al (2017) Different methods of real-time PCR for detection of pseudorabies virus. Ciência Rural. https://doi.org/10.1590/0103-8478cr20160342

    Article  Google Scholar 

  30. DSA D de SA (2012) Memo Circular DSA no 68 de 03.05.12 - Definição de caso de estomatite vesicular. 1–4

  31. Dias NL, Augusto A, Júnior F, et al (2014) Validation of a Real Time PCR for Classical Swine Fever Diagnosis. 2014:4–7. https://doi.org/10.1155/2014/171235

  32. Lunkes VL, Tonin AA, Machado G et al (2016) Antibodies against vesicular stomatitis virus in horses from southern, midwestern and northeastern Brazilian States. Ciência Rural 48:1424–1429

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministério da Agricultura Pecuária e Abastecimento (MAPA), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG—Grant No. APQ-03403-18). JKPR is CNPq fellowship recipient.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenner Karlisson Pimenta dos Reis.

Ethics declarations

Conflict of interest

The authors do not have any potential conflicts of interest to declare.

Ethical approval

This article does not contain studies with human participants or handling of living animals.

Additional information

Handling Editor: William G Dundon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lázaro Sales, M., Dall’Agnol, M., de Oliveira, A.M. et al. RT-qPCR for the diagnosis of the vesiculovirus Cocal virus. Arch Virol 165, 1843–1847 (2020). https://doi.org/10.1007/s00705-020-04668-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04668-6

Navigation