Skip to main content
Log in

Functional polymorphisms of BCL11A and HBS1L-MYB genes affect both fetal hemoglobin level and clinical outcomes in a cohort of children with sickle cell anemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Fetal hemoglobin (HbF) ameliorates clinical severity of sickle cell anemia (SCA). The major loci regulating HbF levels are HBB cluster, BCL11A, and HMIP-2 (HBS1L-MYB). However, the impact of noncoding single-nucleotide polymorphisms (SNPs) in these loci on clinical outcomes and their functional role on regulating HbF levels should be better elucidated. Therefore, we performed comprehensive association analyses of 14 noncoding SNPs in five loci with HbF levels and with clinical outcomes in a cohort of 250 children with SCA from Southeastern Brazil, and further performed functional annotation of these SNPs. We found SNPs independently associated with HbF levels: rs4671393 in BCL11A (β-coefficient = 0.28), rs9399137 in HMIP-2A (β-coefficient = 0.16), and rs4895441 in HMIP-2B (β-coefficient = 0.15). Patients carrying minor (HbF-boosting) alleles for rs1427407, rs93979137, rs4895441, rs9402686, and rs9494145 showed reduced count of reticulocytes (p < 0.01), while those carrying the T allele of rs9494145 showed lower white blood cell count (p = 0.002). Carriers of the minor allele for rs9402686 showed higher peripheral saturation of oxygen (p = 0.002). Patients carrying minor alleles in BCL11A showed lower risk of transfusion incidence rate ratio (IRR ≥ 1.3; p < 0.0001). This effect was independent of HbF effect (p = 0.005). Carriers of minor alleles for rs9399137 and rs9402686 showed lower risk of acute chest syndrome (IRR > 1.3; p ≤ 0.01). Carriers of the reference allele for rs4671393 showed lower risk of infections (IRR = 1.16; p = 0.01). In conclusion, patients carrying HbF-boosting alleles of BCL11A and HMIP-2 were associated with milder clinical phenotypes. Higher HbF concentration may underlie this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steinberg MH (2008) Sickle cell Anemia, the first molecular disease: overview of molecular etiology, pathophysiology, and therapeutic approaches. Sci World J 8:1295–1324. https://doi.org/10.1100/tsw.2008.157

    Article  Google Scholar 

  2. Habara A, Steinberg MH (2016) Minireview: genetic basis of heterogeneity and severity in sickle cell disease. Exp Biol Med 241(7):689–696. https://doi.org/10.1177/1535370216636726

    Article  CAS  Google Scholar 

  3. Lettre G, Bauer DE (2016) Fetal haemoglobin in sickle-cell disease: from genetic epidemiology to new therapeutic strategies. Lancet 387(10037):2554–2564

    Article  CAS  Google Scholar 

  4. Steinberg MH, Sebastiani P (2012) Genetic modifiers of sickle cell disease. Am J Hematol 87(8):795–803. https://doi.org/10.1002/ajh.23232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Green NS, Barral S (2014) Emerging science of hydroxyurea therapy for pediatric sickle cell disease. Pediatr Res 75(0):196–204. https://doi.org/10.1038/pr.2013.227

    Article  CAS  PubMed  Google Scholar 

  6. Sankaran VG, Orkin SH (2013) The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med 3(1):a011643–a011643. https://doi.org/10.1101/cshperspect.a011643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Close J, Game L, Clark B, Bergounioux J, Gerovassili A, Thein SL (2004) Genome annotation of a 1.5 Mb region of human chromosome 6q23 encompassing a quantitative trait locus for fetal hemoglobin expression in adults. BMC Genomics 5(1):1

    Article  Google Scholar 

  8. Craig JE, Rochette J, Fisher CA, Weatherall DJ, Marc S, Lathrop GM, Demenais F, Thein S (1996) Dissecting the loci controlling fetal haemoglobin production on chromosomes 11p and 6q by the regressive approach. Nat Genet 12(1):58–64. https://doi.org/10.1038/ng0196-58

    Article  CAS  PubMed  Google Scholar 

  9. Dover G, Smith K, Chang Y, Purvis S, Mays A, Meyers D, Sheils C, Serjeant G Fetal hemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2.11

  10. Lettre G, Sankaran VG, Bezerra MAC, Araújo AS, Uda M, Sanna S, Cao A, Schlessinger D, Costa FF, Hirschhorn JN, Orkin SH (2008) DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A 105(33):11869–11874. https://doi.org/10.1073/pnas.0804799105

    Article  PubMed  PubMed Central  Google Scholar 

  11. Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S, Foglio M, Zelenika D, Boland A, Rooks H, Best S, Spector TD, Farrall M, Lathrop M, Thein SL (2007) A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 39(10):1197–1199. https://doi.org/10.1038/ng2108

    Article  CAS  PubMed  Google Scholar 

  12. Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, Usala G, Busonero F, Maschio A, Albai G, Piras MG, Sestu N, Lai S, Dei M, Mulas A, Crisponi L, Naitza S, Asunis I, Deiana M, Nagaraja R, Perseu L, Satta S, Cipollina MD, Sollaino C, Moi P, Hirschhorn JN, Orkin SH, Abecasis GR, Schlessinger D, Cao A (2008) Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A 105(5):1620–1625. https://doi.org/10.1073/pnas.0711566105

    Article  PubMed  PubMed Central  Google Scholar 

  13. Galarneau G, Palmer CD, Sankaran VG, Orkin SH, Hirschhorn JN, Lettre G (2010) Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat Genet 42(12):1049–1051. https://doi.org/10.1038/ng.707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thein SL, Menzel S, Peng X, Best S, Jiang J, Close J, Silver N, Gerovasilli A, Ping C, Yamaguchi M, others (2007) Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci 104(27):11346–11351

    Article  CAS  Google Scholar 

  15. Laurentino MR, Barbosa MC, Santos TEJ, Perdigão ACB, Araújo FMC, Lemes RPG (2018) Analysis of BCL11A gene polymorphisms and hemolysis parameters in patients with sickle-cell disease. J Bras Patol Med Lab 54(3). https://doi.org/10.5935/1676-2444.20180025

  16. Mtatiro SN, Makani J, Mmbando B, Thein SL, Menzel S, Cox SE (2015) Genetic variants at HbF-modifier loci moderate anemia and leukocytosis in sickle cell disease in Tanzania. Am J Hematol 90(1):E1–E4. https://doi.org/10.1002/ajh.23859

    Article  CAS  PubMed  Google Scholar 

  17. Rumaney MB, Ngo Bitoungui VJ, Vorster AA, Ramesar R, Kengne AP, Ngogang J, Wonkam A (2014) The co-inheritance of alpha-thalassemia and sickle cell anemia is associated with better hematological indices and lower consultations rate in Cameroonian patients and could improve their survival. PLoS One 9(6):e100516. https://doi.org/10.1371/journal.pone.0100516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wonkam A, Ngo Bitoungui VJ, Vorster AA, Ramesar R, Cooper RS, Tayo B, Lettre G, Ngogang J (2014) Association of variants at BCL11A and HBS1L-MYB with hemoglobin F and hospitalization rates among sickle cell patients in Cameroon. PLoS One 9(3):e92506. https://doi.org/10.1371/journal.pone.0092506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cardoso GL, Diniz IG, Martins da Silva ANL, Cunha DA, da Silva Junior JS, Carvalho Uchôa CT, dos Santos SEB, Trindade SMS, Cardoso MSO, Guerreiro JF (2014) DNA polymorphisms at BCL11A, HBS1L-MYB and Xmn1-HBG2 site loci associated with fetal hemoglobin levels in sickle cell anemia patients from Northern Brazil. Blood Cell Mol Dis 53(4):176–179. https://doi.org/10.1016/j.bcmd.2014.07.006

    Article  CAS  Google Scholar 

  20. Friedrisch JR, Sheehan V, Flanagan JM, Baldan A, Ginter Summarell CC, Bittar CM, Friedrisch BK, Wilke II, Ribeiro CB, Daudt LE, da Rocha Silla LM (2016) The role of BCL11A and HMIP-2 polymorphisms on endogenous and hydroxyurea induced levels of fetal hemoglobin in sickle cell anemia patients from southern Brazil. Blood Cells Mol Dis 62:32–37. https://doi.org/10.1016/j.bcmd.2016.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leonardo FC, Brugnerotto AF, Domingos IF, Fertrin KY, de Albuquerque DM, Bezerra MAC, Araújo AS, Saad STO, Costa FF, Menzel S, Conran N, Thein SL (2016) Reduced rate of sickle-related complications in Brazilian patients carrying HbF-promoting alleles at the BCL11A and HMIP-2 loci. Br J Haematol 173:456–460. https://doi.org/10.1111/bjh.13961

    Article  CAS  PubMed  Google Scholar 

  22. Ballas SK, Lieff S, Benjamin LJ, Dampier CD, Heeney MM, Hoppe C, Johnson CS, Rogers ZR, Smith-Whitley K, Wang WC, Telen MJ (2010) Definitions of the phenotypic manifestations of sickle cell disease. Am J Hematol 85(1):6–13. https://doi.org/10.1002/ajh.21550

    Article  PubMed  PubMed Central  Google Scholar 

  23. Garner CP, Tatu T, Best S, Creary L, Thein SL (2002) Evidence of genetic interaction between the β-globin complex and chromosome 8q in the expression of fetal hemoglobin. Am J Hum Genet 70(3):793–799

    Article  CAS  Google Scholar 

  24. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics (Oxford, England) 21(2):263–265. https://doi.org/10.1093/bioinformatics/bth457

    Article  CAS  Google Scholar 

  25. O'Brien PC (1983) The appropriateness of analysis of variance and multiple-comparison procedures. Biometrics 39(3):787–794

    Article  CAS  Google Scholar 

  26. Bauer DE, Orkin SH (2015) Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev 33:62–70. https://doi.org/10.1016/j.gde.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, Cherry JM, Snyder M (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22(9):1790–1797. https://doi.org/10.1101/gr.137323.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M (2012) Linking disease associations with regulatory information in the human genome. Genome Res 22(9):1748–1759. https://doi.org/10.1101/gr.136127.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Makani J, Menzel S, Nkya S, Cox SE, Drasar E, Soka D, Komba AN, Mgaya J, Rooks H, Vasavda N, Fegan G, Newton CR, Farrall M, Thein SL (2011) Genetics of fetal hemoglobin in Tanzanian and British patients with sickle cell anemia. Blood 117(4):1390–1392. https://doi.org/10.1182/blood-2010-08-302703

    Article  CAS  PubMed  Google Scholar 

  30. Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC, Pinello L, Sabo PJ, Vierstra J, Voit RA, Yuan G-C, Porteus MH, Stamatoyannopoulos JA, Lettre G, Orkin SH (2013) An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342(6155):253–257. https://doi.org/10.1126/science.1242088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Creary LE, Ulug P, Menzel S, McKenzie CA, Hanchard NA, Taylor V, Farrall M, Forrester TE, Thein SL (2009) Genetic variation on chromosome 6 influences F cell levels in healthy individuals of African descent and HbF levels in sickle cell patients. PLoS One 4(1):e4218. https://doi.org/10.1371/journal.pone.0004218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Green NS, Barral S (2011) Genetic modifiers of HbF and response to hydroxyurea in sickle cell disease. Pediatr Blood Cancer 56(2):177–181. https://doi.org/10.1002/pbc.22754

    Article  PubMed  Google Scholar 

  33. Ngo D, Bae H, Steinberg MH, Sebastiani P, Solovieff N, Baldwin CT, Melista E, Safaya S, Farrer LA, Al-Suliman AM, Albuali WH, Al Bagshi MH, Naserullah Z, Akinsheye I, Gallagher P, Luo H-y, Chui DHK, Farrell JJ, Al-Ali AK, Alsultan A (2013) Fetal hemoglobin in sickle cell anemia: genetic studies of the Arab-Indian haplotype. Blood Cells Mol Dis 51(1):22–26. https://doi.org/10.1016/j.bcmd.2012.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nguyen TKT, Joly P, Bardel C, Moulsma M, Bonello-Palot N, Francina A (2010) The XmnI Gγ polymorphism influences hemoglobin F synthesis contrary to BCL11A and HBS1L-MYB SNPs in a cohort of 57 β-thalassemia intermedia patients. Blood Cell Mol Dis 45(2):124–127. https://doi.org/10.1016/j.bcmd.2010.04.002

    Article  CAS  Google Scholar 

  35. Roy P, Bhattacharya G, Mandal A, Dasgupta UB, Banerjee D, Chandra S, Das M (2012) Influence of BCL11A, HBS1L-MYB, HBBP1 single nucleotide polymorphisms and the HBG2 XmnI polymorphism on HbF levels. Hemoglobin 36(6):592–599. https://doi.org/10.3109/03630269.2012.735626

    Article  CAS  PubMed  Google Scholar 

  36. Akinsheye I, Solovieff N, Ngo D, Malek A, Sebastiani P, Steinberg MH, Chui DHK (2012) Fetal hemoglobin in sickle cell anemia: molecular characterization of the unusually high fetal hemoglobin phenotype in African Americans. Am J Hematol 87(2):217–219. https://doi.org/10.1002/ajh.22221

    Article  CAS  PubMed  Google Scholar 

  37. Bae HT, Baldwin CT, Sebastiani P, Telen MJ, Ashley-Koch A, Garrett M, Hooper WC, Bean CJ, Debaun MR, Arking DE, Bhatnagar P, Casella JF, Keefer JR, Barron-Casella E, Gordeuk V, Kato GJ, Minniti C, Taylor J, Campbell A, Luchtman-Jones L, Hoppe C, Gladwin MT, Zhang Y, Steinberg MH (2012) Meta-analysis of 2040 sickle cell anemia patients: BCL11A and HBS1L-MYB are the major modifiers of HbF in African Americans. Blood 120(9):1961–1962. https://doi.org/10.1182/blood-2012-06-432849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhanushali AA, Patra PK, Pradhan S, Khanka SS, Singh S, Das BR (2015) Genetics of fetal hemoglobin in tribal Indian patients with sickle cell anemia. Transl Res 165(6):696–703. https://doi.org/10.1016/j.trsl.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  39. Bitoungui VJN, Ngogang J, Wonkam A (2015) Polymorphism at BCL11A compared to HBS1L-MYB loci explains less of the variance in HbF in patients with sickle cell disease in Cameroon. Blood Cells Mol Dis 54(3):268–269. https://doi.org/10.1016/j.bcmd.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  40. Sheehan VA, Luo Z, Flanagan JM, Howard TA, Thompson BW, Wang WC, Kutlar A, Ware RE, Investigators BH (2013) Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on laboratory and clinical phenotypes. Am J Hematol 88(7):571–576. https://doi.org/10.1002/ajh.23457

    Article  CAS  PubMed  Google Scholar 

  41. Farrell JJ, Sherva RM, Chen Z-Y, Luo H-Y, Chu BF, Ha SY, Li CK, Lee ACW, Li RCH, Li CK, Yuen HL, So JCC, Ma ESK, Chan LC, Chan V, Sebastiani P, Farrer LA, Baldwin CT, Steinberg MH, Chui DHK (2011) A 3-bp deletion in the HBS1L-MYB intergenic region on chromosome 6q23 is associated with HbF expression. Blood 117(18):4935–4945. https://doi.org/10.1182/blood-2010-11-317081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Powars DR (1991) Beta s-gene-cluster haplotypes in sickle cell anemia. Clinical and hematologic features. Hematol Oncol Clin North Am 5(3):475–493

    Article  CAS  Google Scholar 

  43. Socolovsky M (2007) Molecular insights into stress erythropoiesis. Curr Opin Hematol 14(3):215–224. https://doi.org/10.1097/MOH.0b013e3280de2bf1

    Article  PubMed  Google Scholar 

  44. Solovieff N, Milton JN, Hartley SW, Sherva R, Sebastiani P, Dworkis DA, Klings ES, Farrer LA, Garrett ME, Ashley-Koch A, others (2010) Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5′ olfactory receptor gene cluster. Blood 115(9):1815–1822

    Article  CAS  Google Scholar 

  45. Brugnara C, Zelmanovic D, Sorette M, Ballas SK, Platt O (1997) Reticulocyte hemoglobin: an integrated parameter for evaluation of erythropoietic activity. Am J Clin Pathol 108(2):133–142

    Article  CAS  Google Scholar 

  46. Fernandes APPC, Avendanha FA, Viana MB (2017) Hospitalizations of children with sickle cell disease in the Brazilian Unified Health System in the state of Minas Gerais. J Pediatr 93(3):287–293. https://doi.org/10.1016/j.jped.2016.07.005

    Article  Google Scholar 

  47. Ballas SK, Lusardi M (2005) Hospital readmission for adult acute sickle cell painful episodes: frequency, etiology, and prognostic significance. Am J Hematol 79(1):17–25. https://doi.org/10.1002/ajh.20336

    Article  PubMed  Google Scholar 

  48. Platt OS, Thorington BD, Brambilla DJ, Milner PF, Rosse WF, Vichinsky E, Kinney TR (1991) Pain in sickle cell disease. N Engl J Med 325(1):11–16. https://doi.org/10.1056/NEJM199107043250103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge all subjects and parents for their cooperation in the study.

Funding

Financial support was from Fundação Hemominas, Núcleo de Ações e Pesquisa em Apoio Diagnóstico (NUPAD/UFMG), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahyssa Rodrigues Sales.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 50 kb)

ESM 2

(DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sales, R.R., Belisário, A.R., Faria, G. et al. Functional polymorphisms of BCL11A and HBS1L-MYB genes affect both fetal hemoglobin level and clinical outcomes in a cohort of children with sickle cell anemia. Ann Hematol 99, 1453–1463 (2020). https://doi.org/10.1007/s00277-020-04079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-020-04079-2

Keywords

Navigation