Skip to main content
Log in

Melaleuca leucadendra Essential Oil Promotes Loss of Cell Membrane and Wall Integrity and Inhibits Bacterial Growth: An In Silico and In Vitro Approach

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Essential oils are potential antimicrobial agents and can be used as active ingredients in the pharmaceutical, food and cosmetics industries. This work intends to evaluate the antibacterial activity and design a strategy for the proposition of the mechanism of action of Melaleuca leucadendra essential oil. Optimum concentration of the bacteria and the phase where they had the highest pathogenic activity were determined. Results show that for each microorganism it is necessary to use a different concentration at the time of adjusting the initial inoculum, and that the time to achieve exponential growth phase varies from one to the other. M. leucadendra essential oil demonstrated in vitro antimicrobial properties. This oil was chemically characterized and the main compounds were evaluated by their mechanism of antibacterial action based on structure–activity analysis. The mechanism is related to the increase of bacteria cell membrane permeability. This indication was confirmed by flow cytometry and transmission electronic microscopy. Thus, in silico analysis is an important tool in the search for new antimicrobial agents and these results showed that M. leucadendra essential oil may be useful on the development of new chemotherapies or food preservation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu Y, Ding S, Shen J, Zhu K (2019) Nonribosomal antibacterial peptides that target multidrug- resistant bacteria. Nat Prod Rep 36:573–592. https://doi.org/10.1039/C8NP00031J

    Article  PubMed  CAS  Google Scholar 

  2. Kupferschmidt K (2016) Resistance fighters. Science 352(6287):758–761. https://doi.org/10.1126/science.352.6287.758

    Article  PubMed  CAS  Google Scholar 

  3. Loureiro RJ, Roque F, Rodrigues AT, Herdeiro MT, Ramalheira E (2016) Use of antibiotics and bacterial resistances: Brief notes on its evolution. Rev Port Saúde Pública 34(1):77–84. https://doi.org/10.1016/j.rpsp.2015.11.003

    Article  Google Scholar 

  4. World Health Organization (WHO) (2018) Antimicrobial Resistance Report. Available at https://reports.weforum.org/global-risks-2018/anti-microbial-resistance/. Accessed December 1, 2018.

  5. Kappor G, Saigal S, Elongavan A (2017) Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol 33(3):300–305. https://doi.org/10.4103/joacp.JOACP_349_15

    Article  Google Scholar 

  6. Gajdács M (2019) The concept of an ideal antibiotic: Implications for drug design. Molecules 24(5):892. https://doi.org/10.3390/molecules24050892

    Article  PubMed Central  CAS  Google Scholar 

  7. Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10(10):813–829. https://doi.org/10.2174/0929867033457719

    Article  PubMed  CAS  Google Scholar 

  8. Ríos JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100(1–2):80–84. https://doi.org/10.1016/j.jep.2005.04.025

    Article  PubMed  CAS  Google Scholar 

  9. Savoia D (2012) Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 7(8):979–990. https://doi.org/10.2217/fmb.12.68

    Article  PubMed  CAS  Google Scholar 

  10. Tiwari BK, Valdramidis VP, O’Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem 57(14):5987–6000. https://doi.org/10.1021/jf900668n

    Article  PubMed  CAS  Google Scholar 

  11. Sharifi-Rad J, Salehi B, Varoni EM, Sharopov F, Yousaf Z, Ayatollahi SA, Kobarfard F, Sharifi-Rad M, Afdjei MH, Sharifi-Rad M, Iriti M (2017) Plants of the Melaleuca genus as antimicrobial agents: From farm to pharmacy. Phytother Res 31(10):1475–1494. https://doi.org/10.1002/ptr.5880

    Article  PubMed  CAS  Google Scholar 

  12. Carson FC, Hammer KA, Riley TV (2006) Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 19(1):50–62. https://doi.org/10.1128/CMR.19.1.50-62.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Padalia RC, Verma RS, Chauhan A, Chanotiya CS (2015) The essential oil composition of Melaleuca leucadendra L. grown in India: A novel source of (E)-nerolidol. Ind Crop Prod 69:224–227. https://doi.org/10.1016/j.indcrop.2015.02.019

    Article  CAS  Google Scholar 

  14. Amenta R, Camarda L, Di Stefano V, Lentini F, Venza F (2000) Traditional medicine as a source of new therapeutic agents against psoriasis. Fitoterapia 71(1):S13–S20. https://doi.org/10.1016/s0367-326x(00)00172-6

    Article  PubMed  Google Scholar 

  15. Valdés AFC, Martínez JM, Lizama RS, Vermeersch M, Cos P, Maes L (2008) In vitro anti-microbial activity of the Cuban medicinal plants Simarouba glauca DC, Melaleuca leucadendron L and Artemisia absinthium L. Mem Inst Oswaldo Cruz 103(6):615–618. https://doi.org/10.1590/s0074-02762008000600019

    Article  PubMed  Google Scholar 

  16. Sarr FB, Sarr M, Diop D, Mo K, Bâ A, Guèue L, Diallo AS, Samb A, Andriantsitohaina R, Cissé F (2010) In vitro modulation of tracheal smooth muscle reactivity by extracts of some Senegalese medicinal plants. J Med Plant Res 4(1):13–18

    Google Scholar 

  17. Hiermann A, Bucar F (1994) Influence of some traditional medicinal plants of Senegal on prostaglandin biosynthesis. J Ethnopharmacol 42(2):111–116. https://doi.org/10.1016/0378-8741(94)90104-x

    Article  PubMed  CAS  Google Scholar 

  18. Niang S, Tine Y, Diatta B, Diallo M, Fall M, Seck NB, Kane A (2015) Negative cutaneous effects of medicinal plants in Senegal. Br J Dermatol 173(2):26–29. https://doi.org/10.1111/bjd.13679

    Article  PubMed  Google Scholar 

  19. Seibert JB, Rodrigues IV, Carneiro SP, Amparo TR, Lanza JS, Frezard FJG, Souza GHB, Santos ODH (2019) Seasonality study of essential oil from leaves of Cymbopogon densiflorus and nanoemulsion development with antioxidant activity. Flavour Frag J 34(1):5–14. https://doi.org/10.1002/ffj.3472

    Article  CAS  Google Scholar 

  20. Seibert JB, Bautista-Silva JP, Amparo TR, Peti A, Pervier P, Almeida JCS, Azevedo MC, Silveira BM, Brandão GC, Souza GHB, Teixeira LFM, Santos ODH (2019) Development of propolis nanoemulsion with antioxidant and antimicrobial activity for use as a potential natural preservative. Food Chem 287:61–67. https://doi.org/10.1016/j.foodchem.2019.02.078

    Article  PubMed  CAS  Google Scholar 

  21. Ostrosky EA, Mizumoto MK, Lima MEL, Kaneko TM, Nishikawa SO, Freitas BR (2008) Methods for evaluation of the antimicrobial activity and determination of minimum inhibitory concentration (MIC) of plant extracts. Rev Bras Farmacogn 18(2):301–307. https://doi.org/10.1590/S0102-695X2008000200026

    Article  CAS  Google Scholar 

  22. Oliveira MLG, Assenco RAG, Silva GDF, Lopes JC, Silva FC, Lanna MCS, Magalhães JC, Duarte LP, Viera-Filho SA (2014) Cytotoxicity, anti-poliovirus activity and in silico biological evaluation of constituents from Maytenus gonoclada (Celastraceae). Int J Pharm Pharm Sci 6(10):130–137

    Google Scholar 

  23. Seibert JB, Viegas JSR, Almeida TC, Amparo TR, Rodrigues IV, Lanza JS, Frézard FJG, Soares RDOA, Teixeira LFM, De Souza GHBS, Vieira PMA, Barichello JM, Dos Santos ODH (2019) Nanostrucutured systems improve the antimicrobial potential of the essential oil from Cymbopogon densiflorus leaves. J Nat Prod 82(12):3208–3220. https://doi.org/10.1021/acs.jnatprod.8b00870

    Article  PubMed  CAS  Google Scholar 

  24. Cui H, Zhang C, Li C, Lin L (2019) Antibacterial mechanism of oregano essential oil. Ind Crop Prod 139:111498. https://doi.org/10.1016/j.indcrop.2019.111498

    Article  CAS  Google Scholar 

  25. Crisler JD, Newville TM, Chen F, Clark BC, Schneegurt MA (2012) Bacterial growth at the high concentrations of magnesium sulfate found in martian soils. Astrobiology 12(2):98–106. https://doi.org/10.1089/ast.2011.0720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ernebjerg M, Kishony R (2012) Distinct growth of soil bacteria as revealed by larger scale colony tracking. Appl Environ Microbiol 78(5):1345–1352. https://doi.org/10.1128/AEM.06585-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lohakachornpan P, Rangsipanuratn W (2001) Chemical compositions and antimicrobial activities of essential oil from Melaleuca leucadendron var minor. Thai J Pharm Sci 25(3–4):133–139

    Google Scholar 

  28. Silva CJ, Barbosa LC, Maltha CR, Pinheiro AL, Ismail FM (2007) Comparative study of the essential oils of seven Melaleuca (Myrtaceae) species grown in Brazil. Flavour Frag J 22(6):474–478. https://doi.org/10.1002/ffj.1823

    Article  CAS  Google Scholar 

  29. Brophy JJ, Lassak EV (1988) Melaleuca leucadendra L leaf oil: two phenylpropanoid chemotypes. Flavour Fragr J 3(1):43–46. https://doi.org/10.1002/ffj.2730030109

    Article  CAS  Google Scholar 

  30. Aboutabl EA, Tohamy SFEL, De Pooter HL, De Buyck LF (1991) A comparative study of the essential oils from three Melaleuca species growing in Egypt. Flavour Fragr J 6(2):139–141. https://doi.org/10.1002/ffj.2730060209

    Article  CAS  Google Scholar 

  31. Farag RS, Shalaby AS, El-Baroty GA, Ibrahim NA, Ali MA, Hassan EM (2004) Chemical and biological evaluation of the essential oils of different Melaleuca species. Phytother Res 18(1):30–35. https://doi.org/10.1002/ptr.1348

    Article  PubMed  CAS  Google Scholar 

  32. Pino J, Bello A, Urquiola A, Agüero J, Marbot R (2002) Chemical composition of Cajuput oil (Melaleuca leucadendra L.) from Cuba. J Essent Oil Res 14:10–11. https://doi.org/10.1080/10412905.2002.9699744

    Article  CAS  Google Scholar 

  33. Silva CJ, Barbosa LCA, Demuner AJ, Montanari RM, Pinheiro AL, Dias I, Andrade NJ (2010) Chemical composition and antibacterial activities from the essential oils of Myrtaceae species planted in Brazil. Quim Nova 33(1):104–108. https://doi.org/10.1590/S0100-40422010000100019

    Article  CAS  Google Scholar 

  34. Padalia RC, Verma RS, Chauhan A, Goswami P, Verma SK, Darokar MP (2015) Chemical composition of Melaleuca linarrifolia Sm. from India: a potential source of 1,8-cineole. Ind Crop Prod 63:264–268. https://doi.org/10.1016/j.indcrop.2014.09.039

    Article  CAS  Google Scholar 

  35. Carson SF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (Tea Tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46(6):1914–1920. https://doi.org/10.1128/aac.46.6.1914-1920.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR, Wyllie SG (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88(1):170–175. https://doi.org/10.1046/j.1365-2672.2000.00943.x

    Article  PubMed  CAS  Google Scholar 

  37. Li WR, Li HL, Shi QS, Sun TL, Xie XB, Song B, Huang XM (2016) The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl Microbiol Biotechnol 100(20):8865–8875. https://doi.org/10.1007/s00253-016-7692-4

    Article  PubMed  CAS  Google Scholar 

  38. Longbottom CJ, Carson CF, Hammer KA, Mee BJ, Riley TV (2004) Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. J Antimicrob Chemother 54(2):386–392. https://doi.org/10.1093/jac/dkh359

    Article  PubMed  CAS  Google Scholar 

  39. Mann CM, Cox SD, Markham JL (2000) The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Lett Appl Microbiol 30(4):294–297. https://doi.org/10.1046/j.1472-765x.2000.00712.x

    Article  PubMed  CAS  Google Scholar 

  40. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristiani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanism of antibacterial actions of three monoterpenes. Antimicrob Agents Chemother 49(6):2474–2478. https://doi.org/10.1128/AAC.49.6.2474-2478.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ultee A, Bennik MHJ, Moezelard R (2002) The phenolic hydroxyl group of carvacol is essential for action against food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68(4):1561–1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ben AA, Combes S, Preziosi-Belloy L, Gontard N, Chalier P (2006) Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol 43(2):149–154. https://doi.org/10.1111/j.1472-765X.2006.01938.x

    Article  CAS  Google Scholar 

  43. Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91(3):453–462. https://doi.org/10.1046/j.1365-2672.2001.01428.x

    Article  PubMed  CAS  Google Scholar 

  44. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V (2013) Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 6:1451–1474. https://doi.org/10.3390/ph6121451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Center of Microscopy at the Federal University of Minas Gerais for providing equipment and technical support for experiments involving electron microscopy. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

JPBS and JBS conducted experiments and wrote the manuscript. TRA and IVR contributed with analytical tools and analyzed data. LFMT, GHBS and ODHS designed research, wrote and revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Orlando D. H. dos Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bautista-Silva, J.P., Seibert, J.B., Amparo, T.R. et al. Melaleuca leucadendra Essential Oil Promotes Loss of Cell Membrane and Wall Integrity and Inhibits Bacterial Growth: An In Silico and In Vitro Approach. Curr Microbiol 77, 2181–2191 (2020). https://doi.org/10.1007/s00284-020-02024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02024-0

Navigation