Skip to main content
Log in

Development of genetically modified citrus plants for the control of citrus canker and huanglongbing

  • Review
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Citrus cultivation is challenging due to the plethora of abiotic and biotic stresses faced by the crop. In recent years, production has been severely affected by diseases such as citrus canker and huanglongbing (HLB). Disease management is hampered as there is no field resistance to these diseases in any of the important commercially planted varieties. Traditionally, conventional breeding approaches have been applied for the improvement of the susceptible cultivars; however, this technique is laborious and time consuming. Genetic transformation of citrus allows for the rapid integration of novel genes into the plant’s genome to develop disease-resistant transgenic plants. Therefore, efforts have been made to utilize genetic engineering tools to develop genetically modified citrus that are resistant to citrus canker and HLB. This review summarizes the major achievements made in the development of citrus canker and HLB tolerance using transgenic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achor D, Welker S, Ben-Mahmoud S, Wang C, Folimonova SY, Dutt M, Gowda S, Levy A (2020) Dynamics of Candidatus Liberibacter asiaticus movement and sieve-pore plugging in Citrus sink cells. Plant Physiology 182:882–891

    CAS  PubMed  Google Scholar 

  • Adaskaveg J, Hine R (1985) Copper tolerance and zinc sensitivity of Mexican strains of Xanthomonas campestris pv. Vesicatoria, causal agent of bacterial spot of pepper. Plant Disease 69:993–996

    CAS  Google Scholar 

  • Aist J (1976) Papillae and related wound plugs of plant cells. Annual Review of Phytopathology 14:145–163

    Google Scholar 

  • Al-Saadi A, Reddy JD, Duan YP, Brunings AM, Yuan Q, Gabriel DW (2007) All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Molecular Plant-Microbe Interactions 20:934–943

    CAS  PubMed  Google Scholar 

  • Aubert B, Bové J (1980) Effect of penicillin or tetracycline injections of citrus trees affected by greening disease under field conditions in Reunion Island. International Organization of Citrus Virologists Conference Proceedings (1957-2010)

  • Azevedo FA, Mourão Filho F, Mendes B, Almeida W, Schinor E, Pio R, Barbosa J, Guidetti-Gonzalez S, Carrer H, Lam E (2006) Genetic transformation of Rangpur lime (Citrus limonia osbeck) with thebO (bacterio-opsin) genen and its initial evaluation for Phytophthora nicotianae resistance. Plant Molecular Biology Reporter 24:185–196

    CAS  Google Scholar 

  • Baltzer SA, Brown MH (2011) Antimicrobial peptides-promising alternatives to conventional antibiotics. Journal of Molecular Microbiology and Biotechnology 20:228–235

    CAS  PubMed  Google Scholar 

  • Barbosa-Mendes JM, Mourão Filho FAA, Bergamin Filho A, Harakava R, Beer SV, Mendes BMJ (2009) Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Scientia Horticulturae 122:109–115

    CAS  Google Scholar 

  • Benko-Iseppon AM, Lins Galdino S, Calsa T Jr, Akio Kido E, Tossi A, Carlos Belarmino L, Crovella S (2010) Overview on plant antimicrobial peptides. Current Protein & Peptide Science 11:181–188

    CAS  Google Scholar 

  • Bergey D, Dutt M, Barthe G, Irey M, Grosser J (2015) Genetically modified citrus rootstocks expressing a synthetic cationic antimicrobial peptide slows down bacterial infection in the non-transgenic Scion. In Vitro Cellular & Developmental Biology-Plant 51:499–499

  • Bernauer T (2016) Genes, trade, and regulation: the seeds of conflict in food biotechnology. Princeton University Press, Princeton

  • Beyer P (2010) Golden Rice and ‘Golden’crops for human nutrition. New Biotechnology 27:478–481

    CAS  PubMed  Google Scholar 

  • Bhuiyan NH, Selvaraj G, Wei Y, King J (2009) Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. Journal of Experimental Botany 60:509–521

    CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  PubMed  Google Scholar 

  • Borhan MH, Holub EB, Kindrachuk C, Omidi M, BOZORGMANESH-FRAD G, Rimmer SR (2010) WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed brassica crops. Molecular Plant Pathology 11:283–291

    CAS  PubMed  Google Scholar 

  • Boscariol RL, Monteiro M, Takahashi EK, Chabregas SM, Vieira MLC, Vieira LG, Pereira LF, de AA Mourão Filho F, Cardoso SC, Christiano RS (2006) Attacin A gene from Tricloplusia ni reduces susceptibility to Xanthomonas axonopodis pv. Citri in transgenic citrus sinensis Hamlin. Journal of the American Society for Horticultural Science 131:530–536

  • Boscariol-Camargo RL, Takita MA, Machado MA (2016) Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2. Tropical Plant Pathology 41:341–349

    Google Scholar 

  • Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology 88:7–37

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proceedings of the National Academy of Sciences 99:9328–9333

    CAS  Google Scholar 

  • Cardoso SC, Barbosa-Mendes JM, Boscariol-Camargo RL, Christiano RSC, Bergamin Filho A, Vieira MLC, Mendes BMJ, Mourão Filho FAA (2010) Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to Xanthomonas citri subsp. citri. Plant Molecular Biology Reporter 28:185–192

    CAS  Google Scholar 

  • Carlsson A, Nyström T, de Cock H, Bennich H (1998) Attacin-an insect immune protein-binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology 144:2179–2188

    CAS  PubMed  Google Scholar 

  • Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L, Pena L (1998) Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Research 7:51–59

    CAS  Google Scholar 

  • Cervera M, Navarro A, Navarro L, Peña L (2008) Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Physiology 28:55–66

    CAS  PubMed  Google Scholar 

  • Cha J-S, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proceedings of the National Academy of Sciences 88:8915–8919

    CAS  Google Scholar 

  • Chen X-Y, Kim J-Y (2009) Callose synthesis in higher plants. Plant Signaling & Behavior 4:489–492

    CAS  Google Scholar 

  • Chen C, Smye S, Robinson M, Evans J (2006) Membrane electroporation theories: a review. Medical and Biological Engineering and Computing 44:5–14

    CAS  PubMed  Google Scholar 

  • Chen X, Barnaby JY, Sreedharan A, Huang X, Orbović V, Grosser JW, Wang N, Dong X, Song W-Y (2013) Over-expression of the citrus gene CtNH1 confers resistance to bacterial canker disease. Physiological and Molecular Plant Pathology 84:115–122

    CAS  Google Scholar 

  • Chen Y, Barzee TJ, Zhang R, Pan Z (2019) Citrus. Integrated processing Technologies for Food and agricultural by-products. Elsevier, Cambridge pp 217–242

    Google Scholar 

  • Chiyaka C, Singer BH, Halbert SE, Morris JG, van Bruggen AH (2012) Modeling huanglongbing transmission within a citrus tree. Proceedings of the National Academy of Sciences 109:12213–12218

    CAS  Google Scholar 

  • Cieśla M, Towpik J, Graczyk D, Oficjalska-Pham D, Harismendy O, Suleau A, Balicki K, Conesa C, Lefebvre O, Boguta M (2007) Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription. Molecular and Cellular Biology 27:7693–7702

    PubMed  PubMed Central  Google Scholar 

  • Cocking E (1977) Uptake of foreign genetic material by plant protoplasts. International review of cytology. Elsevier, London, pp 323–343

    Google Scholar 

  • Coll N, Epple P, Dangl J (2011) Programmed cell death in the plant immune system. Cell Death & Differentiation 18:1247–1256

    CAS  Google Scholar 

  • Coote PJ, Holyoak CD, Bracey D, Ferdinando DP, Pearce JA (1998) Inhibitory action of a truncated derivative of the amphibian skin peptide dermaseptin s3 on Saccharomyces cerevisiae. Antimicrobial Agents and Chemotherapy 42:2160–2170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dagulo L, Danyluk MD, Spann TM, Valim MF, Goodrich-Schneider R, Sims C, Rouseff R (2010) Chemical characterization of orange juice from trees infected with citrus greening (Huanglongbing). Journal of Food Science 75:C199–C207

    CAS  PubMed  Google Scholar 

  • Dalio RJ, Magalhaes DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PM, Santos PJ, Maximo HJ (2017) PAMPs, PRRs, effectors and R-genes associated with citrus–pathogen interactions. Annals of Botany 119:749–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dandekar AM, Jacobson A, Ibanez AM, Gouran H, Dolan D, Agüero C, Uratsu SL, Just R, Zaini PA (2019) Trans-graft protection against Pierce’s disease mediated by transgenic grapevine rootstocks. Frontiers in Plant Science 10:84

    PubMed  PubMed Central  Google Scholar 

  • De Lucca A, Bland J, Grimm C, Jacks T, Cary J, Jaynes J, Cleveland T, Walsh T (1998) Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1. Canadian Journal of Microbiology 44:514–520

    PubMed  Google Scholar 

  • Deng Z, Gmitter F (2003) Cloning and characterization of receptor kinase class disease resistance gene candidates in Citrus. Theoretical and Applied Genetics 108:53–61

    CAS  PubMed  Google Scholar 

  • Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ, Santos AS, Strynadka NC, Finlay BB (2017) Assembly, structure, function and regulation of type III secretion systems. Nature Reviews Microbiology 15:323–337

    CAS  PubMed  Google Scholar 

  • Ding-li L, Xiao X, Guo W (2014) Production of transgenic anliucheng sweet orange (Citrus sinensis Osbeck) with Xa21 gene for potential canker resistance. Journal of Integrative Agriculture 13:2370–2377

    Google Scholar 

  • Dominguez A, Guerri J, Cambra M, Navarro L, Moreno P, Pena L (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Reports 19:427–433

    CAS  PubMed  Google Scholar 

  • Dong X (2004) NPR1, all things considered. Current Opinion in Plant Biology 7:547–552

    CAS  PubMed  Google Scholar 

  • Dong OX, Ronald PC (2019) Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiology 180:26–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunger G, Garofalo CG, Gottig N, Garavaglia BS, ROSA MCP, Farah CS, Orellano EG, Ottado J (2012) Analysis of three Xanthomonas axonopodis pv. Citri effector proteins in pathogenicity and their interactions with host plant proteins. Molecular Plant Pathology 13:865–876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annual Review of Phytopathology 42:185–209

    CAS  PubMed  Google Scholar 

  • Dutt M, Grosser J (2009) Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell, Tissue and Organ Culture (PCTOC) 98:331–340

    CAS  Google Scholar 

  • Dutt M, Grosser J (2010) An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus. Plant Cell Reports 29:1251–1260

    CAS  PubMed  Google Scholar 

  • Dutt M, Li ZT, Kelley KT, Dhekney SA, Van Aman M, Tattersall J, Gray DJ (2007) Transgenic rootstock protein transmission in grapevines. 738 edn. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 749-754

  • Dutt M, Orbovic V, Grosser JW (2009) Cultivar dependent gene transfer into citrus using Agrobacterium. Proceeding of the Florida State Horticultural Society 122:85–89

  • Dutt M, Barthe G, Grosser J (2013) Systemic acquired resistance (SAR) in citrus: genetic transformation with SAR genes for resistance to Huanglongbing and canker. Proceedings of the International Society of Citriculture Session 2:289–294

    Google Scholar 

  • Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus greening). PLoS One 10:e0137134

    PubMed  PubMed Central  Google Scholar 

  • Dutt M, Barthe G, Irey M, Grosser J (2016) Correction: transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus greening). PLoS One 11:e0147657

    PubMed  PubMed Central  Google Scholar 

  • Dutt M, Erpen L, Grosser JW (2018) Genetic transformation of the ‘W Murcott’tangor: comparison between different techniques. Scientia Horticulturae 242:90–94

    CAS  Google Scholar 

  • Ellinger D, Voigt CA (2014) Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Annals of Botany 114:1349–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engström P, Carlsson A, Engström A, Tao Z, Bennich H (1984) The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. The EMBO Journal 3:3347–3351

    PubMed  PubMed Central  Google Scholar 

  • Enrique R, Siciliano F, Favaro MA, Gerhardt N, Roeschlin R, Rigano L, Sendin L, Castagnaro A, Vojnov A, Marano MR (2011) Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. Plant Biotechnology Journal 9:394–407

    CAS  PubMed  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Signal molecules in systemic plant resistance to pathogens and pests. Cell 70:879–886

    CAS  PubMed  Google Scholar 

  • Etxeberria E, Gonzalez P, Achor D, Albrigo G (2009) Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiological and Molecular Plant Pathology 74:76–83

    CAS  Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Peña L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Molecular Breeding 7:175–185

    CAS  Google Scholar 

  • Fagoaga C, López C, de Mendoza AH, Moreno P, Navarro L, Flores R, Peña L (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Molecular Biology 60:153–165

    CAS  PubMed  Google Scholar 

  • Felipe RTA, Mourão Filho FAA, Lopes SA, Mendes BMJ, Behling M, Pereira Junior EV (2013) Reaction of sweet orange cultivars expressing the attacin A gene to 'Candidatus Liberibacter asiaticus' infection. Pesquisa Agropecuária Brasileira 48:1440–1448

    Google Scholar 

  • Fernández V, Guzmán-Delgado P, Graça J, Santos S, Gil L (2016) Cuticle structure in relation to chemical composition: re-assessing the prevailing model. Frontiers in Plant Science 7:427

    PubMed  PubMed Central  Google Scholar 

  • Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnology 10:1466–1472

    CAS  Google Scholar 

  • Fleming G, Olivares-Fuster O, Del-Bosco SF, Grosser J (2000) An alternative method for the genetic transformation of sweet orange. In Vitro Cellular & Developmental Biology-Plant 36:450–455

    CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annual Review of Phytopathology 9:275–296

    Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annual Review of Plant Biology 64:839–863

    CAS  PubMed  Google Scholar 

  • Furman N, Kobayashi K, Zanek MC, Calcagno J, Garcia ML, Mentaberry A (2013) Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease. Journal of Biotechnology 167:412–419

    CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiology and Molecular Biology Reviews 67:16–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez H (2008) Experiencies on HLB (Huanglongbing) symptoms detection in Florida. Memorias del Taller Internacional sobre el Huanglongbing y el Psílido asiático de los cítricos Hermosillo, Son

  • Gong XQ, Liu JH (2013) Genetic transformation and genes for resistance to abiotic and biotic stresses in Citrus and its related genera. Plant Cell, Tissue and Organ Culture (PCTOC) 113:137–147

    CAS  Google Scholar 

  • Gottwald TR (2010) Current epidemiological understanding of citrus huanglongbing. Annual Review of Phytopathology 48:119–139

    CAS  PubMed  Google Scholar 

  • Gottwald TR, Graham JH (2014) Citrus diseases with global ramifications including citrus canker and huanglongbing. CAB Reviews 9:1–11

    Google Scholar 

  • Gottwald T, Graham J, Civerolo E, Barrett H, Hearn C (1993) Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determinated by leaf mesophyll susceptiblity. Plant Disease 77:1004

    Google Scholar 

  • Gottwald TR, Hughes G, Graham JH, Sun X, Riley T (2001) The citrus canker epidemic in Florida: the scientific basis of regulatory eradication policy for an invasive species. Phytopathology 91:30–34

    CAS  PubMed  Google Scholar 

  • Gottwald TR, Graham JH, Schubert TS (2002) Citrus canker: the pathogen and its impact. Plant Health Progress 3:15

    Google Scholar 

  • Goyal RK, Mattoo AK (2014) Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Science 228:135–149

    CAS  PubMed  Google Scholar 

  • Granato LM, Galdeano DM, Nathália Da Roz DA, Breton MC, Machado MA (2019) Callose synthase family genes plays an important role in the Citrus defense response to Candidatus Liberibacter asiaticus. European Journal of Plant Pathology 155:25–38

    CAS  Google Scholar 

  • Grosser JW, Gmitter FG (1990) Protoplast fusion and citrus improvement. Plant Breeding Reviews 8:339–374

    Google Scholar 

  • Grosser J, Gmitter F, Tusa N, Chandler J (1990) Somatic hybrid plants from sexually incompatible woody species: Citrus reticulata and Citropsis gilletiana. Plant Cell Reports 8:656–659

    CAS  PubMed  Google Scholar 

  • Grosser J, Dutt M, Omar A, Orbovic V, Barthe G (2009) Progress towards the development of transgenic disease resistance in citrus. II International Symposium on Citrus Biotechnology 892:101–107

    Google Scholar 

  • Guo W, Duan Y, Olivares-Fuster O, Wu Z, Arias CR, Burns JK, Grosser JW (2005) Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Reports 24:482–486

    CAS  PubMed  Google Scholar 

  • Gutiérrez-E M, Luth D, Moore G (1997) Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Reports 16:745–753

    PubMed  Google Scholar 

  • Guzmán-Rodríguez JJ, Ochoa-Zarzosa A, López-Gómez R, López-Meza JE (2015) Plant antimicrobial peptides as potential anticancer agents. BioMed Research International 2015:1–11

    Google Scholar 

  • Halbert SE, Manjunath K, Ramadugu C, Lee RF (2012) Incidence of huanglongbing-associated ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri (Hemiptera: Psyllidae) collected from plants for sale in Florida. Florida Entomologist 95:617–625

    Google Scholar 

  • Hall DG, Gottwald T, Arnold CE (2010) A perspective of research on HLB and its vector in the United States. Proceedings of the Second Taller Internacional Sobre Huanglongbing y el Psilido Asiatico de los Citricos:19–23

  • Hao G, Pitino M, Duan Y, Stover E (2016a) Reduced susceptibility to Xanthomonas citri in transgenic citrus expressing the FLS2 receptor from Nicotiana benthamiana. Molecular Plant-Microbe Interactions 29:132–142

    CAS  PubMed  Google Scholar 

  • Hao G, Stover E, Gupta G (2016b) Overexpression of a modified plant thionin enhances disease resistance to citrus canker and huanglongbing (HLB). Frontiers in Plant Science 7:1078

    PubMed  PubMed Central  Google Scholar 

  • Hao G, Zhang S, Stover E (2017) Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus. PloS One 12:e0186810

    PubMed  PubMed Central  Google Scholar 

  • Haroldsen VM, Chi-Ham CL, Bennett AB (2012) Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks. Journal of Biotechnology 161:349–353

    CAS  PubMed  Google Scholar 

  • Hennin C, Höfte M, Diederichsen E (2001) Functional expression of Cf9 and Avr9 genes in Brassica napus induces enhanced resistance to Leptosphaeria maculans. Molecular Plant-Microbe Interactions 14:1075–1085

    CAS  PubMed  Google Scholar 

  • Hernandez C, Mor A, Dagger F, Nicolas P, Hernandez A, Benedetti E, Dunia I (1992) Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin. European Journal of Cell Biology 59:414–424

    CAS  PubMed  Google Scholar 

  • Hodges AW, Spreen TH (2012) Economic impacts of citrus greening (HLB) in Florida, 2006/07-2010/11. Food and Resource Economics Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, EDIS document FE903

  • Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer WB, Yang B, White FF, Wang N, Jones JB (2014) Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proceedings of the National Academy of Sciences 111:E521–E529

    CAS  Google Scholar 

  • Hu J, Jiang J, Wang N (2018) Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 108:186–195

    CAS  PubMed  Google Scholar 

  • Hultmark D, Engström A, Andersson K, Steiner H, Bennich H, Boman H (1983) Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. The EMBO Journal 2:571–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaynes JM, Nagpala P, Destéfano-Beltrán L, Huang JH, Kim J, Denny T, Cetiner S (1993) Expression of a cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Science 89:43–53

    CAS  Google Scholar 

  • Jia H, Orbovic V, Jones JB, Wang N (2016) Modification of the PthA4 effector binding elements in Type I Cs LOB 1 promoter using Cas9/sg RNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCs LOB 1.3 infection. Plant Biotechnology Journal 14:1291–1301

    CAS  PubMed  Google Scholar 

  • Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal 15:817–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Kaur P, Stanton D, Grosser J, Dutt M (2018) Yield and transformation ability of citrus protoplasts derived from either cell suspension cultures or embryogenic callus. Proceeding of the Florida State Horticultural Society 131:65–69

    Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, Van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Sciences 98:6511–6515

    CAS  Google Scholar 

  • Kikkert JR, Vidal JR, Reisch BI (2005) Stable transformation of plant cells by particle bombardment/biolistics. Transgenic plants: methods and protocols. Springer, pp 61-78

  • Klein TM, Arentzen R, Lewis PA, Fitzpatrick-McElligott S (1992) Transformation of microbes, plants and animals by particle bombardment. Biotechnology 10:286

    CAS  PubMed  Google Scholar 

  • Ko K, Norelli JL, Reynoird J-P, Aldwinckle HS, Brown SK (2002) T4 lysozyme and attacin genes enhance resistance of transgenic galaxy'Apple against Erwinia amylovora. Journal of the American Society for Horticultural Science 127:515–519

    CAS  Google Scholar 

  • Kobayashi S, Uchimiya H (1989) Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. The Japanese Journal of Genetics 64:91–97

    Google Scholar 

  • Kobayashi AK, Vieira LGE, Bespalhok Filho JC, Leite RP, Pereira LFP, Molinari HBC, Marques VV (2017) Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. European Journal of Plant Pathology 149:865–873

    CAS  Google Scholar 

  • Kuć J (1987) Translocated signals for plant immunization a. Annals of the New York Academy of Sciences 494:221–223

    Google Scholar 

  • Lee JA, Halbert SE, Dawson WO, Robertson CJ, Keesling JE, Singer BH (2015) Asymptomatic spread of huanglongbing and implications for disease control. Proceedings of the National Academy of Sciences 112:7605–7610

    CAS  Google Scholar 

  • Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q (2019) The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research 11:3919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leite R Jr, Mohan S (1990) Integrated management of the citrus bacterial canker disease caused by Xanthomonas campestris pv. citri in the State of Paraná, Brazil. Crop Protection 9:3–7

    Google Scholar 

  • Lev-Yadun S, Sederoff R (2001) Grafting for transgene containment. Nature Biotechnology 19:1104–1104

    CAS  PubMed  Google Scholar 

  • Liu X, Walawage SL, Leslie CA, Dandekar AM, Tricoli DM, Hu H, Huang Y, Zhang J, Xv C, Huang J (2017) In vitro gene expression and mRNA translocation from transformed walnut (Juglans regia) rootstocks expressing DsRED fluorescent protein to wild-type scions. Plant Cell Reports 36:877–885

    CAS  PubMed  Google Scholar 

  • Loucks KW (1934) Citrus canker and its eradication in Florida. Florida. Department of Agriculture. Division of Plant Industry

  • Lu H, Zhang C, Albrecht U, Shimizu R, Bowman K (2013) Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis. Frontiers in Plant Science 4:157

    PubMed  PubMed Central  Google Scholar 

  • Luo K-R, Huang N-C, Yu T-S (2018) Selective targeting of mobile mRNAs to plasmodesmata for cell-to-cell movement. Plant Physiology 177:604–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes BMJ, Cardoso S, Boscariol-Camargo R, Cruz R, Mourão Filho F, Bergamin Filho A (2010) Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathology 59:68–75

    CAS  Google Scholar 

  • Mendonça L, Zambolim L, Badel J (2017) Bacterial citrus diseases: major threats and recent progress. Journal of Bacteriology and Mycology Open Access 5:340–350

    Google Scholar 

  • Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. The Plant Journal 50:500–513

    CAS  PubMed  Google Scholar 

  • Mondal S, Dutt M, Grosser J, Dewdney M (2012) Transgenic citrus expressing the antimicrobial gene Attacin E (attE) reduces the susceptibility of ‘Duncan’ grapefruit to the citrus scab caused by Elsinoë fawcettii. European Journal of Plant Pathology 133:391–404

    CAS  Google Scholar 

  • Moore G, Jacono C, Neidigh J, Lawrence S, Cline K (1992) Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Reports 11:238–242

    CAS  PubMed  Google Scholar 

  • Mourgues F, Brisset M-N, Chevreau E (1998) Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends in Biotechnology 16:203–210

    CAS  PubMed  Google Scholar 

  • Navon-Venezia S, Feder R, Gaidukov L, Carmeli Y, Mor A (2002) Antibacterial properties of dermaseptin S4 derivatives with in vivo activity. Antimicrobial Agents and Chemotherapy 46:689–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A (2014) Plant antimicrobial peptides. Folia Microbiologica 59:181–196

    CAS  PubMed  Google Scholar 

  • Niedz RP, McKendree W, Shatters R (2003) Electroporation of embryogenic protoplasts of sweet orange (Citrus sinensis (L.) Osbeck) and regeneration of transformed plants. In Vitro Cellular & Developmental Biology-Plant 39:586

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology 24:1420–1428

    CAS  PubMed  Google Scholar 

  • Oard SV (2011) Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide. Biochimica et Biophysica Acta (BBA)-Biomembranes 1808:1737–1745

    CAS  Google Scholar 

  • Olson B, Jones A (1983) Reduction of Pseudomonas syringae pv. morsprunorum on Montmorency sour cherry with copper and dynamics of the copper residues. Phytopathology 73:1520–1525

    CAS  Google Scholar 

  • Omar A, Song WY, Grosser J (2007) Introduction of Xa21, a Xanthomonas-resistance gene from rice, into ‘Hamlin’ sweet orange [Citrus sinensis (L.) Osbeck] using protoplast-GFP co-transformation or single plasmid transformation. The Journal of Horticultural Science and Biotechnology 82:914–923

    CAS  Google Scholar 

  • Omar AA, Murata MM, El-Shamy HA, Graham JH, Grosser JW (2018) Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice. Transgenic Research 27:179–191

    CAS  PubMed  Google Scholar 

  • Osusky M, Osuska L, Kay W, Misra S (2005) Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theoretical and Applied Genetics 111:711–722

    CAS  PubMed  Google Scholar 

  • Pena L, Cervera M, Juárez J, Ortega C, Pina J, Durán-Vila N, Navarro L (1995) High efficiency agrobacterium-mediated transformation and regeneration of citrus. Plant Science 104:183–191

    CAS  Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnology Journal 15:1509–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, Ellis SR, Hopper AK, Sentenac A, Boguta M (2001) Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Molecular and Cellular Biology 21:5031–5040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ponce de León I, Montesano M (2013) Activation of defense mechanisms against pathogens in mosses and flowering plants. International Journal of Molecular Sciences 14:3178–3200

    PubMed  Google Scholar 

  • Reynoird J, Mourgues F, Norelli J, Aldwinckle H, Brisset M, Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Science 149:23–31

    CAS  Google Scholar 

  • Rioux D, Jacobi V, Simard M, Hamelin R (2000) Structural changes of spores of tree fungal pathogens after treatment with the designed antimicrobial peptide D2A21. Canadian Journal of Botany 78:462–471

    CAS  Google Scholar 

  • Rivero M, Furman N, Mencacci N, Picca P, Toum L, Lentz E, Bravo-Almonacid F, Mentaberry A (2012) Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. Journal of Biotechnology 157:334–343

    CAS  PubMed  Google Scholar 

  • Robertson CJ, Zhang X, Gowda S, Orbović V, Dawson W, Mou Z (2018) Overexpression of the Arabidopsis NPR1 protein in citrus confers tolerance to Huanglongbing. Journal of Citrus Pathology 5:1–8

  • Rocha Tavano EC, Vieira ML (2015) Genetic transformation of citrus sinensis' hamlin' with attacin a driven by a phloem tissue-specific promoter for resistance to Candidatus liberibacter spp. Acta Horticulturae 1065:695–702

  • Rommens C, Salmeron JM, Oldroyd G, Staskawicz BJ (1995) Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. The Plant Cell 7:1537–1544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ronald PC, Albano B, Tabien R, Abenes L, Wu K-s, McCouch S, Tanksley SD (1992) Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Molecular and General Genetics MGG 236:113–120

    CAS  PubMed  Google Scholar 

  • Roy-Barman S, Sautter C, Chattoo BB (2006) Expression of the lipid transfer protein ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Research 15:435–446

    CAS  PubMed  Google Scholar 

  • Serrano M, Coluccia F, Torres M, L’Haridon F, Métraux J-P (2014) The cuticle and plant defense to pathogens. Frontiers in Plant Science 5:274

    PubMed  PubMed Central  Google Scholar 

  • Shi Q, Febres VJ, Jones JB, Moore GA (2015) Responsiveness of different citrus genotypes to the X. anthomonas citri ssp. citri-derived pathogen-associated molecular pattern (PAMP) flg22 correlates with resistance to citrus canker. Molecular Plant Pathology 16:507–520

    CAS  PubMed  Google Scholar 

  • Shi Q, Febres VJ, Jones JB, Moore GA (2016) A survey of FLS2 genes from multiple citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp. citri. Horticulture Research 3:16022

    PubMed  PubMed Central  Google Scholar 

  • Shimada T, Endo T, Fujii H, Rodríguez A, Peña L, Omura M (2014) Characterization of three linalool synthase genes from Citrus unshiu Marc. and analysis of linalool-mediated resistance against Xanthomonas citri subsp. citri and Penicilium italicum in citrus leaves and fruits. Plant Science 229:154–166

    CAS  PubMed  Google Scholar 

  • Shimada T, Endo T, Rodríguez A, Fujii H, Goto S, Matsuura T, Hojo Y, Ikeda Y, Mori IC, Fujikawa T (2017) Ectopic accumulation of linalool confers resistance to Xanthomonas citri subsp. citri in transgenic sweet orange plants. Tree Physiology 37:654–664

    CAS  PubMed  Google Scholar 

  • Shor B, Wu J, Shakey Q, Toral-Barza L, Shi C, Follettie M, Yu K (2010) Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. Journal of Biological Chemistry 285:15380–15392

    CAS  PubMed  Google Scholar 

  • Silalahi J (2002) Anticancer and health protective properties of citrus fruit components. Asia Pacific Journal of Clinical Nutrition 11:79–84

    CAS  PubMed  Google Scholar 

  • Song GQ, Walworth AE, Loescher WH (2015) Grafting of genetically engineered plants. Journal of the American Society for Horticultural Science 140:203–213

  • Soprano AS, Abe VY, Smetana JHC, Benedetti CE (2013) Citrus MAF1, a repressor of RNA polymerase III, binds the Xanthomonas citri canker elicitor PthA4 and suppresses citrus canker development. Plant Physiology 163:232–242

  • Stall RE, Civerolo EL (1991) Research relating to the recent outbreak of citrus canker in Florida. Annual Review of Phytopathology 29:399–420

    CAS  PubMed  Google Scholar 

  • Stone BA, Clarke AE (1992) Chemistry and biology of 1, 3-β-Glucans. Intl Specialized Book Service Inc

  • Stover E, Stange RR, McCollum TG, Jaynes J, Irey M, Mirkov E (2013) Screening antimicrobial peptides in vitro for use in developing transgenic citrus resistant to Huanglongbing and citrus canker. Journal of the American Society for Horticultural Science 138:142–148

    CAS  Google Scholar 

  • Stover E, McCollum GT, Driggers R, Lee R, Shatters R Jr, Duan Y, Ritenour M, Chaparro JX, Hall DG (2015) Resistance and tolerance to Huanglongbing in citrus. Acta Horticulture 1065:899–903

    Google Scholar 

  • Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. The Plant Journal 37:517–527

    CAS  PubMed  Google Scholar 

  • Sun L, Ke F, Nie Z, Wang P, Xu J (2019) Citrus genetic engineering for disease resistance: past, present and future. International Journal of Molecular Sciences 20:5256

    CAS  PubMed Central  Google Scholar 

  • Tavano EC, Erpen L, Aluisi B, Harakava R, Lopes JR, Vieira ML, Piedade SM, Mendes BM, Mourão Filho FD (2019) Sweet orange genetic transformation with the attacin A gene under the control of phloem-specific promoters and inoculation with Candidatus Liberibacter asiaticus. The Journal of Horticultural Science and Biotechnology 94:210–219

  • Teixeira CD, Saillard C, Eveillard S, Danet JL, Ayres A, Bové J (2005) 'Candidatus Liberibacter americanus', associated with citrus huanglongbing (greening disease) in São Paulo state, Brazil. International Journal of Systematic and Evolutionary Microbiology 55:1857–1862

  • Thilmony RL, Chen Z, Bressan RA, Martin GB (1995) Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv tabaci expressing avrPto. The Plant Cell 7:1529–1536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ting S (1980) Nutrients and nutrition of citrus fruits. Citrus Nutrition and Quality 3:24

    Google Scholar 

  • Underwood W (2012) The plant cell wall: a dynamic barrier against pathogen invasion. Frontiers in Plant Science 3:85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veronese P, Ruiz MT, Coca MA, Hernandez-Lopez A, Lee H, Ibeas JI, Damsz B, Pardo JM, Hasegawa PM, Bressan RA (2003) In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiology 131:1580–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discovery Today 15:40–56

    CAS  PubMed  Google Scholar 

  • Wally O, Punja ZK (2010) Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops 1:199–206

    PubMed  Google Scholar 

  • Wei ZM, Beer SV (1995) Harpin from Erwinia amylovora induces plant resistance. VII International Workshop on Fire Blight 411:223–226

    Google Scholar 

  • Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88

    CAS  PubMed  Google Scholar 

  • Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology 32:656–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Acanda Y, Jia H, Wang N, Zale J (2016) Biolistic transformation of Carrizo citrange (Citrus sinensis Osb.× Poncirus trifoliata L. Raf.). Plant Cell Reports 35:1955–1962

    CAS  PubMed  Google Scholar 

  • Wu H, Acanda Y, Canton M, Zale J (2019) Efficient biolistic transformation of immature citrus rootstocks using phosphomannose-isomerase selection. Plants 8:390

    CAS  PubMed Central  Google Scholar 

  • Xiao S, Charoenwattana P, Holcombe L, Turner JG (2003) The Arabidopsis genes RPW8. 1 and RPW8. 2 confer induced resistance to powdery mildew diseases in tobacco. Molecular Plant-Microbe Interactions 16:289–294

    CAS  PubMed  Google Scholar 

  • Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP (2013) The draft genome of sweet orange (Citrus sinensis). Nature Genetics 45:59–66

    CAS  PubMed  Google Scholar 

  • Yang Z, Ingelbrecht I, Louzada E, Skaria M, Mirkov T (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.). Plant Cell Reports 19:1203–1211

    CAS  PubMed  Google Scholar 

  • Yang C, Zhong Y, Powell CA, Doud MS, Duan Y, Huang Y, Zhang M (2018) Antimicrobial compounds effective against Candidatus Liberibacter asiaticus discovered via graft-based assay in citrus. Scientific Reports 8:1–11

    Google Scholar 

  • Yaron S, Rydlo T, Shachar D, Mor A (2003) Activity of dermaseptin K4-S4 against foodborne pathogens. Peptides 24:1815–1821

    CAS  PubMed  Google Scholar 

  • Yevtushenko DP, Misra S (2012) Transgenic expression of antimicrobial peptides in plants: strategies for enhanced disease resistance, improved productivity, and production of therapeutics. Small wonders: peptides for disease control. ACS Publications, Washington, D.C., pp 445–458

    Google Scholar 

  • Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect antimicrobial peptides and their applications. Applied Microbiology and Biotechnology 98:5807–5822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Francis MI, Dawson WO, Graham JH, Orbović V, Triplett EW, Mou Z (2010) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. European Journal of Plant Pathology 128:91–100

    CAS  Google Scholar 

  • Zhang M, Guo Y, Powell CA, Doud MS, Yang C, Duan Y (2014) Effective antibiotics against ‘Candidatus Liberibacter asiaticus’ in HLB-affected citrus plants identified via the graft-based evaluation. PloS one 9:1–11

  • Zhang W, Zhao F, Jiang L, Chen C, Wu L, Liu Z (2018) Different pathogen defense strategies in Arabidopsis: more than pathogen recognition. Cells 7:252

    CAS  PubMed Central  Google Scholar 

  • Zhao D, Song GQ (2014) Rootstock-to-scion transfer of transgene-derived small interfering RNAs and their effect on virus resistance in nontransgenic sweet cherry. Plant Biotechnology Journal 12:1319–1328

  • Zipfel C, Robatzek S (2010) Pathogen-associated molecular pattern-triggered immunity: veni, vidi…? Plant Physiology 154:551–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    CAS  PubMed  Google Scholar 

  • Zou X, Jiang X, Xu L, Lei T, Peng A, He Y, Yao L, Chen S (2017) Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Molecular Biology 93:341–353

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjul Dutt.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, J.M., Tanwir, S.E., Grosser, J.W. et al. Development of genetically modified citrus plants for the control of citrus canker and huanglongbing. Trop. plant pathol. 45, 237–250 (2020). https://doi.org/10.1007/s40858-020-00362-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-020-00362-9

Keywords

Navigation