Skip to main content
Log in

Photocatalytic Degradation of Eriochrome Black-T Azo Dye Using Eu-Doped ZnO Prepared by Supercritical Antisolvent Precipitation Route: A Preliminary Investigation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The aim of this work is to preliminary investigate the photocatalytic performances toward the removal of eriochrome black-T dye under UV and visible irradiation using Eu-doped ZnO obtained through a supercritical antisolvent (SAS) process in comparison with Eu-doped ZnO prepared by drying-precipitation method and Eu-doped TiO2 prepared by sol–gel route. XRD patterns show that the presence of Eu+3 does not change the crystalline structure of both TiO2 and ZnO, evidencing that Eu+3 is successfully incorporated into the semiconductors lattice. The morphology of samples obtained after SAS micronization consists of nanoparticles with a regular shape and characterized by average size in the range 65.0–84.7 nm. UV–Vis DRS spectra evidence that the doping of TiO2 and ZnO with Eu+3 leads to an increase of band gap value with respect to undoped samples because of the presence of dopant ions into the host structure. Eu-doped ZnO sample synthetized by the SAS process shows better photocatalytic efficiency in terms of both discoloration and mineralization, reaching the almost total dye removal after 240 min of UV light irradiation. The enhancement of the photocatalytic activity of Eu-doped ZnO sample synthetized by SAS process is ascribed to the presence of Eu+3 in the lattice, but also to the higher specific surface area, smaller crystallite size and its morphology features, if compared with Eu-doped ZnO prepared by drying-precipitation method and Eu-doped TiO2 prepared by sol–gel route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pessoni H, Maia L, Franco A Jr (2015) Eu-doped ZnO nanoparticles prepared by the combustion reaction method: Structural, photoluminescence and dielectric characterization. Mater Sci Semicond Process 30:135–141

    CAS  Google Scholar 

  2. Daksh D, Agrawal YK (2016) Rare earth-doped zinc oxide nanostructures: a review. Rev Nanosci Nanotechnol 5(1):1–27

    CAS  Google Scholar 

  3. Cerrato E, Gionco C, Berruti I, Sordello F, Calza P, Paganini MC (2018) Rare earth ions doped ZnO: synthesis, characterization and preliminary photoactivity assessment. J Solid State Chem 264:42–47

    CAS  Google Scholar 

  4. Ntwaeaborwa OM, Mofokeng SJ, Kumar V, Kroon RE (2017) Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles. Spectrochim Acta Part A 182:42–49

    CAS  Google Scholar 

  5. Dash D, Panda N, Sahu D (2019) Photoluminescence and photocatalytic properties of europium doped ZnO nanoparticles. Appl Surf Sci 494:666–674

    CAS  Google Scholar 

  6. Trandafilović LV, Jovanović DJ, Zhang X, Ptasińska S, Dramićanin M (2017) Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles. Appl Catal B 203:740–752

    Google Scholar 

  7. Korake P, Kadam A, Garadkar K (2014) Photocatalytic activity of Eu3+-doped ZnO nanorods synthesized via microwave assisted technique. J Rare Earths 32(4):306–313

    CAS  Google Scholar 

  8. Vaiano V, Sacco O, Sannino D, Ciambelli P (2015) Process intensification in the removal of organic pollutants from wastewater using innovative photocatalysts obtained coupling Zinc Sulfide based phosphors with nitrogen doped semiconductors. J Clean Prod 100:208–211

    CAS  Google Scholar 

  9. Sacco O, Vaiano V, Daniel C, Navarra W, Venditto V (2019) Highly robust and selective system for water pollutants removal: how to transform a traditional photocatalyst into a highly robust and selective system for water pollutants removal. Nanomaterials 9(11):1509

    CAS  Google Scholar 

  10. Pirilä M, Saouabe M, Ojala S, Rathnayake B, Drault F, Valtanen A, Huuhtanen M, Brahmi R, Keiski RL (2015) Photocatalytic degradation of organic pollutants in wastewater. Top Catal 58(14–17):1085–1099

    Google Scholar 

  11. Sannino D, Vaiano V, Ciambelli P (2013) Innovative structured VOx/TiO2 photocatalysts supported on phosphors for the selective photocatalytic oxidation of ethanol to acetaldehyde. Catal Today 205:159–167

    CAS  Google Scholar 

  12. Ciambelli P, Sannino D, Palma V, Vaiano V, Eloy P, Dury F, Gaigneaux EM (2007) Tuning the selectivity of MoOx supported catalysts for cyclohexane photo oxidehydrogenation. Catal Today 128(3–4):251–257

    CAS  Google Scholar 

  13. Parrino F, Bellardita M, García-López E, Marcì G, Loddo V, Palmisano L (2018) Heterogeneous photocatalysis for selective formation of high-value-added molecules: Some chemical and engineering aspects. ACS Catal 8(12):11191–11225

    CAS  Google Scholar 

  14. Vaiano V, Sarno G, Sacco O, Sannino D (2017) Degradation of terephthalic acid in a photocatalytic system able to work also at high pressure. Chem Eng J 312:10–19

    CAS  Google Scholar 

  15. Vaiano V, Matarangolo M, Sacco O (2018) UV-LEDs floating-bed photoreactor for the removal of caffeine and paracetamol using ZnO supported on polystyrene pellets. Chem Eng J 350:703–713

    CAS  Google Scholar 

  16. Štrbac D, Aggelopoulos CA, Štrbac G, Dimitropoulos M, Novaković M, Ivetić T, Yannopoulos SN (2018) Photocatalytic degradation of Naproxen and methylene blue: comparison between ZnO, TiO2 and their mixture. Process Saf Environ Prot 113:174–183

    Google Scholar 

  17. Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K (2013) Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique. Chemosphere 91(11):1604–1611

    CAS  Google Scholar 

  18. Khatamian M, Khandar A, Divband B, Haghighi M, Ebrahimiasl S (2012) Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm3+) doped ZnO nanoparticles. J Mol Catal A 365:120–127

    CAS  Google Scholar 

  19. Lee H, Hong JA (2018) Surface spectroscopic analysis of TiO2 and ZnO nanoparticles doped with noble metals. Top Catal 61(12–13):1257–1262

    CAS  Google Scholar 

  20. Zong Y, Li Z, Wang X, Ma J, Men Y (2014) Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles. Ceram Int 40(7):10375–10382

    CAS  Google Scholar 

  21. Marin R, Oussta F, Katea SN, Prabhudev S, Botton GA, Westin G, Hemmer E (2019) Europium-doped ZnO nanosponges–controlling optical properties and photocatalytic activity. J Mater Chem C 7(13):3909–3919

    CAS  Google Scholar 

  22. Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater 9(1):014109

    Google Scholar 

  23. Paul N, Mohanta D (2013) Physical properties of nanoscale TiO2 with mild rare earth ion doping. In: International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, 2013. IEEE, pp 167–171

  24. Pandey P, Kurchania R, Haque FZ (2014) Optical studies of europium-doped ZnO nanoparticles prepared by sol–gel technique. J Adv Phys 3(2):104–110

    Google Scholar 

  25. Gao S, Zhang H, Deng R, Wang X, Sun D, Zheng G (2006) Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method. Appl Phys Lett 89(12):123125

    Google Scholar 

  26. Ishizumi A, Kanemitsu Y (2005) Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method. Appl Phys Lett 86(25):253106

    Google Scholar 

  27. Lupan O, Viana B, Pauporté T, Dhaouadi M, Pellé F, Devys L, Gacoin T (2013) Controlled mixed violet–blue–red electroluminescence from Eu: nano-phosphors/ZnO-nanowires/p-gan light-emitting diodes. J Phys Chem C 117(50):26768–26775

    CAS  Google Scholar 

  28. Swapna R, SrinivasaReddy T, Venkateswarlu K, Kumar M (2015) Effect of post-annealing on the properties of Eu doped ZnO nano thin films. Procedia Mater Sci 10:723–729

    CAS  Google Scholar 

  29. Pauporte T, Pelle F, Viana B, Aschehoug P (2007) Luminescence of nanostructured Eu3+/ZnO mixed films prepared by electrodeposition. J Phys Chem C 111(42):15427–15432

    CAS  Google Scholar 

  30. Vaiano V, Matarangolo M, Sacco O, Sannino D (2017) Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts. Appl Catal B 209:621–630

    CAS  Google Scholar 

  31. Franco P, Martino M, Palma V, Scarpellini A, De Marco I (2018) Pt on SAS-CeO2 nanopowder as catalyst for the CO-WGS reaction. Int J Hydrogen Energy 43(43):19965–19975

    CAS  Google Scholar 

  32. Marin RP, Kondrat SA, Davies TE, Morgan DJ, Enache DI, Combes GB, Taylor SH, Bartley JK, Hutchings GJ (2014) Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catal Sci Technol 4(7):1970–1978

    CAS  Google Scholar 

  33. Jiang H, Zhang L, Zhao J, Li Y, Zhang M (2016) Study on MnOx–FeOy composite oxide catalysts prepared by supercritical antisolvent process for low-temperature selective catalytic reduction of NOx. J Mater Res 31(6):702–712

    CAS  Google Scholar 

  34. Da Silva EP, Winkler ME, Giufrida WM, Cardozo-Filho L, Alonso CG, Lopes JB, Rubira AF, Silva R (2019) Effect of phase composition on the photocatalytic activity of titanium dioxide obtained from supercritical antisolvent. J Colloid Interface Sci 535:245–254

    Google Scholar 

  35. Marin RP, Ishikawa S, Bahruji H, Shaw G, Kondrat SA, Miedziak PJ, Morgan DJ, Taylor SH, Bartley JK, Edwards JK (2015) Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. Appl Catal A 504:62–73

    CAS  Google Scholar 

  36. Franco P, Sacco O, De Marco I, Vaiano V (2019) Zinc oxide nanoparticles obtained by supercritical antisolvent precipitation for the photocatalytic degradation of crystal violet dye. Catalysts 9(4):346

    Google Scholar 

  37. Kansal SK, Sood S, Umar A, Mehta S (2013) Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J Alloy Compd 581:392–397

    CAS  Google Scholar 

  38. Vaiano V, Matarangolo M, Sacco O, Sannino D (2017) Photocatalytic removal of eriochrome black T dye over ZnO nanoparticles doped with Pr, Ce or Eu. Chem Eng Trans 57:625–630

    Google Scholar 

  39. Al-Taweel SS, Saud HR (2016) New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol-gel method. J Chem Pharm Res 8(2):620–626

    CAS  Google Scholar 

  40. Kołodziejczak-Radzimska A, Markiewicz E, Jesionowski T (2012) Structural characterisation of ZnO particles obtained by the emulsion precipitation method. J Nanomater. https://doi.org/10.1155/2012/656353

    Article  Google Scholar 

  41. Parrino F, Deiana C, Chierotti MR, Martra G, Palmisano L (2016) Formation of dibutyl carbonate and butylcarbamate via CO2 insertion in titanium (IV) butoxide and reaction with n-butylamine. J CO2 Util 13:90–94

    CAS  Google Scholar 

  42. Konnov S, Serebrennikov L, Mal'tsev A (1982) Infrared spectra of interaction products of europium and ytterbium with oxygen and nitrogen monoxide in argon matrix. Zhurnal Neorganicheskoj Khimii 27(3):654–660

    CAS  Google Scholar 

  43. Pal M, Pal U, Jiménez JMGY, Pérez-Rodríguez F (2012) Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res Lett 7(1):1–12

    Google Scholar 

  44. Hsiao RC, Arul NS, Mangalaraj D, Juang RS (2010) Influence of Eu3+ doping on the degradation property of TiO2 nanostructures. J Optoelectron Adv Mater 12(2):193

    CAS  Google Scholar 

  45. Yurtsever HA, Çiftçioğlu M (2017) The effect of rare earth element doping on the microstructural evolution of sol-gel titania powders. J Alloy Compd 695:1336–1353

    CAS  Google Scholar 

  46. Omar NAS, Fen YW, Matori KA (2016) Photoluminescence properties of Eu3+-doped low cost zinc silicate based glass ceramics. Optik 127(8):3727–3729

    CAS  Google Scholar 

  47. Pandey P, Parra MR, Kurchania R, Haque FZ (2014) Synthesis and optical properties of pure and Eu+3 ion doped ZnO nanoparticles prepared via Sol-Gel method. In: Physics of Semiconductor Devices. Springer, pp 599–600

  48. Dhara S, Raychaudhuri A (2017) Enhancement in red emission at room temperature from europium doped ZnO nanowires by 1, 10 phenanthroline-europium interface induced resonant excitations. AIP Adv 7(2):025306

    Google Scholar 

  49. Filippo E, Carlucci C, Capodilupo AL, Perulli P, Conciauro F, Corrente GA, Gigli G, Ciccarella G (2015) Enhanced photocatalytic activity of pure anatase TiO2 and Pt-TiO2 nanoparticles synthesized by green microwave assisted route. Mater Res 18(3):473–481

    CAS  Google Scholar 

  50. Pal PP, Manam J (2013) Structural and photoluminescence studies of Eu3+ doped zinc oxide nanorods prepared by precipitation method. J Rare Earths 31(1):37–43

    CAS  Google Scholar 

  51. Bachir S, Azuma K, Kossanyi J, Valat P, Ronfard-Haret J (1997) Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide. J Luminesc 75(1):35–49

    CAS  Google Scholar 

  52. Jia T, Wang W, Long F, Fu Z, Wang H, Zhang Q (2009) Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires. J Alloy Compd 484(1–2):410–415

    CAS  Google Scholar 

  53. Burstein E (1954) Anomalous optical absorption limit in InSb. Phys Rev 93(3):632

    CAS  Google Scholar 

  54. Moss T (1954) The interpretation of the properties of indium antimonide. Proc Phys Soc Lond Sect B 67(10):775

    Google Scholar 

  55. El Fakir A, Sekkati M, Schmerber G, Belayachi A, Edfouf Z, Regragui M, Cherkaoui El Moursli F, Sekkat Z, Dinia A, Slaoui A (2017) Influence of rare earth (Nd and Tb) co-doping on ZnO thin films properties. Phys Status Solidi C 14(10):1700169

    Google Scholar 

  56. Teoh WY, Amal R, Mädler L, Pratsinis SE (2007) Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid. Catal Today 120(2):203–213

    CAS  Google Scholar 

  57. Serpone N, Emeline AV, Kuznetsov VN, Ryabchuk VK (2010) Second generation visible-light-active photocatalysts: preparation, optical properties, and consequences of dopants on the band gap energy of TiO2. In: Anpo N, Kamat PV (eds) Environmentally benign photocatalysts. Springer, New York, pp 35–111

    Google Scholar 

  58. Aggelopoulos CA, Dimitropoulos M, Govatsi A, Sygellou L, Tsakiroglou CD, Yannopoulos SN (2017) Influence of the surface-to-bulk defects ratio of ZnO and TiO2 on their UV-mediated photocatalytic activity. Appl Catal B 205:292–301

    CAS  Google Scholar 

  59. Weber AS, Grady AM, Koodali RT (2012) Lanthanide modified semiconductor photocatalysts. Catal Sci Technol 2(4):683–693

    CAS  Google Scholar 

  60. Khatamian M, Divband B, Jodaei A (2012) Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks. Mater Chem Phys 134(1):31–37

    CAS  Google Scholar 

  61. Ajala F, Hamrouni A, Houas A, Lachheb H, Megna B, Palmisano L, Parrino F (2018) The influence of Al doping on the photocatalytic activity of nanostructured ZnO: the role of adsorbed water. Appl Surf Sci 445:376–382

    CAS  Google Scholar 

  62. Grundmann M (2010) Physics of semiconductors, 11th edn. Springer, New York

    Google Scholar 

  63. Hernández-Carrillo M, Torres-Ricárdez R, García-Mendoza M, Ramírez-Morales E, Rojas-Blanco L, Díaz-Flores L, Sepúlveda-Palacios G, Paraguay-Delgado F, Pérez-Hernández G (2018) Eu-modified ZnO nanoparticles for applications in photocatalysis. Catal Today. https://doi.org/10.1016/j.cattod.2018.04.060

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Vincenzo Venditto and Doctor Wanda Navarra for XRD measurements. The authors also acknowledge Ilaria Celentano for her help in performing part of the experiments during her bachelor thesis at the University of Salerno.

Funding

This research received funding from University of Salerno for the projects “Catalizzatori Eterogenei Innovativi per Processi Chimici Sostenibili” (FARB 2017) and “Formulazioni catalitiche innovative per la sostenibilità energetica ed ambientale dei processi chimici” (FARB 2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olga Sacco or Vincenzo Vaiano.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, P., Sacco, O., De Marco, I. et al. Photocatalytic Degradation of Eriochrome Black-T Azo Dye Using Eu-Doped ZnO Prepared by Supercritical Antisolvent Precipitation Route: A Preliminary Investigation. Top Catal 63, 1193–1205 (2020). https://doi.org/10.1007/s11244-020-01279-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01279-y

Keywords

Navigation