Skip to main content
Log in

A study of excited \(\Omega _b^-\) states in hypercentral constituent quark model via artificial neural network

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, we have obtained mass spectra, radiative decay widths and strong decay widths of newly observed excited \(\Omega _b^-\) states, i.e. \(\Omega _b(6316)^-\), \(\Omega _b(6330)^-\), \(\Omega _b(6340)^-\), and \(\Omega _b(6350)^-\). Mass spectrum is obtained in Hypercentral Constituent Quark Model (hCQM) by solving six-dimensional nonrelativistic Schrödinger equation via Artificila Neural Network (ANN). In this respect, radiative decay widhts are calculated by a generalization of a framework from meson to baryon. Also, strong decay widths of the low-lying \(\Omega _b\) states within \(^3P_0\) model are calculated. Obtained results are presented with the comparison of available experimental data and other theoretical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no external data associated with this paper. No datasets were generated or analysed during the current study.]

References

  1. R. Aaijet al. [LHCb Collaboration], First observation of excited \(\Omega _b^-\) states. arXiv:2001.00851 [hep-ex]

  2. H. Garcilazo, J. Vijande, A. Valcarce, Faddeev studyofheavy baryon spectroscopy. J. Phys. G 34, 961 (2007). arXiv:hep-ph/0703257

    Article  Google Scholar 

  3. D. Ebert, R.N. Faustov, V.O. Galkin, Masses of excited heavy baryons in the relativistic quark model. Phys. Lett. B 659, 612 (2008). arXiv:0705.2957 [hep-ph]

    Article  ADS  Google Scholar 

  4. W. Roberts, Pervin, Heavy baryons in a quark model, Int. J. Mod. Phys. A 23, 2817 (2008). arXiv:0711.2492 [nucl-th]

  5. D. Ebert, R.N. Faustov, V.O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture. Phys. Rev. D 84, 014025 (2011). arXiv:1105.0583 [hep-ph]

    Article  ADS  Google Scholar 

  6. T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Spectrum of heavy baryons in the quark model. Phys. Rev. D 92, 114029 (2015)

    Article  ADS  Google Scholar 

  7. G. Yang, J. Ping, J. Segovia, The S- and P-wave low-lying Baryons in the chiral quark model. Few Body Syst. 59, 113 (2018). arXiv:1709.09315 [hep-ph]

    Article  ADS  Google Scholar 

  8. Q. Mao, H.X. Chen, W. Chen, A. Hosaka, X. Liu, S.L. Zhu, QCD sum rule calculation for P-wave bottom baryons. Phys. Rev. D 92, 114007 (2015). arXiv:1510.05267 [hep-ph]

    Article  ADS  Google Scholar 

  9. S.S. Agaev, K. Azizi, H. Sundu, Decay widths of the excited \(\Omega _b\) baryons. Phys. Rev. D 96, 094011 (2017). arXiv:1708.07348 [hep-ph]

    Article  ADS  Google Scholar 

  10. H.M. Yang, H.X. Chen, E.L. Cui, A. Hosaka, Q. Mao. arXiv:1909.13575 [hep-ph]

  11. S.S. Agaev, K. Azizi, H. Sundu, On the nature of the newly discovered \(\Omega \) states. EPL 118, 61001 (2017). arXiv:1703.07091 [hep-ph]

    Article  ADS  Google Scholar 

  12. X.-W. Kang, J.A. Oller, Eur. Phys. J. C 77, 399 (2017). arXiv:1612.08420 [hep-ph]

    Article  ADS  Google Scholar 

  13. K. Thakkar, Z. Shah, A.K. Rai, P.C. Vinodkumar, Excited state mass spectra and Regge trajectories of bottom baryons. Nucl. Phys. A 965, 57 (2017). arXiv:1610.00411 [nucl-th]

  14. K.W. Wei, B. Chen, N. Liu, Q.Q. Wang, X.H. Guo, Spectroscopy of singly, doubly, and triply bottom baryons. Phys. Rev. D 95, 116005 (2017). arXiv:1609.02512 [hep-ph]

    Article  ADS  Google Scholar 

  15. H. X. Chen, E. L. Cui, A. Hosaka, Q. Mao, H. M. Yang, Excited \(\Omega _b\) baryons and fine structure of strong interaction. arXiv:2001.02147 [hep-ph]

  16. W. Liang, Q. F. Lü, Strong decays of the newly observed narrow \(\Omega _b\) structures. arXiv:2001.02221 [hep-ph]

  17. W. H. Liang, E. Oset, The observed \(\Omega _b\) spectrum andmeson-baryon molecular states. arXiv:2001.02929 [hep-ph]

  18. Z.G. Wang, Analysis of the \(\Omega _b(6316)^-\), \(\Omega _b(6330)^-\), \(\Omega _b(6340)^-\) and \(\Omega _b(6350)^-\) wihtin QCd sum rules. arXiv:2001.02961 [hep-ph]

  19. L.Y. Xiao, K.L. Wang, M.S. Liu, X.H. Zhong, Possible interpretation of the newly observed \(\Omega _b\) states. arXiv:2001.05110 [hep-ph]

  20. M. Tanabashi et al., Particle data group. Phys. Rev. D 98, 030001 (2018)

    Article  ADS  Google Scholar 

  21. Z.G. Wang, Analysis of the \(\frac{1}{2}^-\) and \(\frac{3}{2}^-\) heavy and doubly heavy baryon states with QCD sum rules. Eur. Phys. J. A 47, 81 (2011). arXiv:1003.2838 [hep-ph]

    Article  ADS  Google Scholar 

  22. E.Santopinto, A. Giachino, J. Ferretti, H. Garcia-Tecocoatzi, M.A. Bedolla, R. Bijkerand E. Ortiz-Pacheco, The \(\Omega _c\)-puzzle solved by means of quark model predictions. Eur. Phys. J. C 79, 1012 (2019). arXiv:1811.01799 [hep-ph]

  23. Z. Ghalenovi, A. Rajabi, S.-X. Qin, D.H. Rischke, Ground-state masses and magnetic moments of heavy baryons. Mod. Phys. Lett. A 29(20), 1450106 (2014). arXiv:1403.4582 [hep-ph]

    Article  ADS  Google Scholar 

  24. E. Santopinto, Interacting quark-diquark model of baryons. Phys. Rev. C 72, 022201 (2005). arXiv:hep-ph/0412319

    Article  ADS  Google Scholar 

  25. M. M. Giannini, E. Santopinto, The hypercentral constituent quark model and its application to baryon properties. Chin. J. Phys. 53, 020301 (2015). arXiv:1501.03722 [nucl-th]

  26. Z. Shah, K. Thakkar, A.K. Rai, Excited state mass spectra of doubly heavy baryons \(\Omega _{cc}\), \(\Omega _{bb}\), and \(\Omega _{bc}\). Eur. Phys. J. C 76, 530 (2016). arXiv:1609.03030 [hep-ph]

    Article  ADS  Google Scholar 

  27. J. Ballot, M. Fabre de la Ripelle, Applications of Hyperspherical Formalism to the Trinucleon Bound State Problems. Ann. Phys. (N.Y.) 127, 62 (1980)

  28. Y. Koma, M. Koma, H. Wittig, Nonperturbative determination of the QCD potential at \(O(1/m)\). Phys. Rev. Lett. 97, 122003 (2006). arXiv:hep-lat/0607009

    Article  ADS  Google Scholar 

  29. N. Brambilla, A. pineda, J. Soto, A. Vairo, The Heavy Quarkonium Spectrum at order \(m\alpha _s^5 \ln \alpha _s\). Phys. Lett. B 470, 215–222 (1999). arXiv:hep-ph/9910238

  30. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Potential NRQCD: an effective theory for heavy quarkonium. Nucl. Phys. B 566(1–2), 275–310. arXiv:hep-ph/9907240

  31. A. Pineda, J. Soto, Potential NRQED: the positronium case. Phys. Rev. D 59, 016005 (1999). arXiv:hep-ph/9805424

    Article  ADS  Google Scholar 

  32. M.B. Voloshin, Charmonium. Prog. Part. Nucl. Phys. 61, 455–511 (2008). arXiv:0711.4556 [hep-ph]

    Article  ADS  Google Scholar 

  33. N. Yadav, A. Yadav, M. Kumar, An Introduction to Neural Network Methods for Differential Equations, Springer in Applied Sciences and Technology, (2015); D. R. Parisi, M. C. Mariani, M. A. Laborde, Solving differential equations with unsupervised neural networks. Chem. Eng. Process. 42, 715–721 (2003)

  34. M. Sugawara, Numerical solution of the Schrödinger equation by neural network and genetic algorithm. Comput. Phys. Commun. 140, 366–380 (2001)

    Article  ADS  Google Scholar 

  35. I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural network methods in quantum mechanics. Comput. Phys. Commun. 104, 1–14 (1997). arXiv:9705029 [quant-ph]

  36. J.M. Zurada, Introduction to artificial neural systems (West Publishing Co., St. Paul, MN, 1992)

  37. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Charmonium: the model. Phys. Rev. D 17, 3090 (1978)

    Article  ADS  Google Scholar 

  38. W.J. Deng, H. Liu, L.C. Gui, X.H. Zhong, Spectrum and electromagnetic transitions of bottomonium. Phys. Rev. D 95, 074002 (2017). arXiv:1607.04696 [hep-ph]

    Article  ADS  Google Scholar 

  39. W.J. Deng, H. Liu, L.C. Gui, X.H. Zhong, Charmonium spectrum and their electromagnetic transitions with higher multipole contributions. Phys. Rev. D 95, 034026 (2017). arXiv:1608.00287 [hep-ph]

    Article  ADS  Google Scholar 

  40. L. Micu, Decay rates of meson resonances in a quark model. Nucl. Phys. B 10, 521 (1969)

    Article  ADS  Google Scholar 

  41. A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Naive quark pair creation model of strong interaction vertices. Phys. Rev. D 8, 2223 (1973)

    Article  ADS  Google Scholar 

  42. R. Bijker, J. Ferretti, G. Galata, H. Garcia-Tecocoatzi, E. Santopinto, Strong decays of hadrons and missing resonances. Phys. Rev. D 94, 074040 (2016). arXiv:1506.07469 [hep-ph]

    Article  ADS  Google Scholar 

  43. T. Barnes, S. Godfrey, E.S. Swanson, Higher charmonia. Phys. Rev. D 72, 054026 (2005). arXiv:hep-ph/0505002

    Article  ADS  Google Scholar 

  44. E. Santopinto, F. Iachello, M.M. Giannini, Nucleon form factors in a simple three-body quark model. Eur. Phys. J. A 1, 307–315 (1998)

    Article  ADS  Google Scholar 

  45. K.L. Wang, Y.X. Yao, Z.H. Zhong, Q. Zhao, Strong and radiative decays of the low-lying \(S-\) and \(P-\) wave singly heavy baryons. Phys. Rev. D 96, 116016 (2017). arXiv:1709.04268 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Mutuk.

Additional information

Communicated by Eulogio Oset.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutuk, H. A study of excited \(\Omega _b^-\) states in hypercentral constituent quark model via artificial neural network. Eur. Phys. J. A 56, 146 (2020). https://doi.org/10.1140/epja/s10050-020-00161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00161-5

Navigation