Skip to main content
Log in

Benchmarking the PreSPEC@GSI experiment for Coulex-multipolarimetry on the \(\pi (p_{3/2})\rightarrow \pi (p_{1/2})\) spin-flip transition in \(^{85}\hbox {Br}\)

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A first performance test of the Coulomb excitation multipolarimetry (Coulex-multipolarimetry) method is presented. It is based on a \(^{85}\hbox {Br}\,\pi p_{3/2}\rightarrow \pi p_{1/2}\) spin-flip experiment performed as part of the PreSPEC-AGATA campaign at the GSI Helmholtzzentrum für Schwerionenforschung (GSI). Via determination of background levels around the expected \(^{85}\hbox {Br}\) excitations as well as measured \(^{197}\hbox {Au}\) excitations, an upper limit for the M1 transition strength of the \(1/2_1^-\rightarrow 3/2_\text {g.s.}^-\) transition in \(^{85}\hbox {Br}\) and a lower beam time limit for upcoming experimental campaigns utilizing Coulex-multipolarimetry have been inferred. The impact of the use of AGATA in its anticipated \(1\pi \) configuration on these estimates is deduced via Geant4 simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

Notes

  1. He-parameterization [17] for energy-loss calculations was used.

  2. Ratio of measurable time in an arbitrary time window.

  3. A \(2\sigma \) interval around the peak-of-interest was used for the P/B calculations.

  4. Point of \(\gamma \)-ray emission not perfectly known.

References

  1. R. Taniuchi et al., \(^{78}\)Ni revealed as a doubly magic stronghold against nuclear deformation. Nature 569, 53 (2019)

    Article  ADS  Google Scholar 

  2. S. Franchoo et al., Beta Decay of \(^{68-74}\)Ni and level structure of Neutron–Rich Cu isotopes. Phys. Rev. Lett. 81, 3100 (1998)

    Article  ADS  Google Scholar 

  3. S. Franchoo et al., Monopole migration in \(^{69,71,73}\)Cu observed from \(\beta \) decay of laser-ionized \(^{68-74}\)Ni. Physi. Rev. C 64, 054308 (2001)

    Article  ADS  Google Scholar 

  4. K.T. Flanagan et al., Nuclear spins and magnetic moments of \(^{71,73,75}\)Cu: inversion of \(\pi 2p_{3/2}\) and \(\pi 1f_{5/2}\) levels in \(^{75}\)Cu. Phys. Rev. Lett. 103, 142501 (2009)

    Article  ADS  Google Scholar 

  5. T. Otsuka et al., Evolution of nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005)

    Article  ADS  Google Scholar 

  6. T. Otsuka et al., Novel features of nuclear forces and shell evolution in exotic nuclei. Phys. Rev. Lett. 104, 012501 (2010)

    Article  ADS  Google Scholar 

  7. C. Stahl et al., Identification of the proton \(2p_{1/2} \rightarrow 2p_{3/2}\) M1 spin-flip transition in \(^{87}\)Rb. Phys. Rev. C 87, 037302 (2013)

    Article  ADS  Google Scholar 

  8. C. Stahl et al., Coulex-multipolarimetry with relativistic heavy-ion beams. Nucl. Instrum. Methods Phys. Res. A 770, 123 (2015)

    Article  ADS  Google Scholar 

  9. N. Pietralla et al., On the road to FAIR: \(1^\text{st.}\) Operation of AGATA in PreSPEC at GSI, EPJ Web of Conferences 66, 02083 (2014)

  10. H. Geissel et al., The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 70, 14 (1992)

    Article  Google Scholar 

  11. P. Golubev et al., The Lund–York–Cologne Calorimeter (LYCCA): concept, design and prototype developments for a FAIR-NUSTAR detector system to discriminate relativistic heavy-ion reaction products. Nucl. Instrum. Methods Phys. Res. Sect. A 723, 55 (2013)

    Article  ADS  Google Scholar 

  12. A. Akkoyun et al., AGATA-Advanced gamma tracking array. Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012)

    Article  ADS  Google Scholar 

  13. A. Maj et al., Angular distribution of photons from the decay of the GDR in hot and rotating light Yb nuclei from exclusive experiments. Nucl. Phys. A 571, 185 (1994)

    Article  ADS  Google Scholar 

  14. A. Winther, K. Alder, Relativistic coulomb excitation. Nucl. Phys. A 319, 518 (1979)

    Article  ADS  Google Scholar 

  15. J. Lindhard, A.H. Sørensen, Relativistic theory of stopping for heavy ions. Phys. Rev. A 53, 2443 (1996)

    Article  ADS  Google Scholar 

  16. O. Tarasov, D. Bazin, LISE++: radioactive beam production with in-flight separators. Nucl. Instrum. Methods Phys. Res. B 266, 4657 (2008)

    Article  ADS  Google Scholar 

  17. F. Hubert et al., Range and stopping-power tables for 2.5–500 MeV/nucleon heavy ions in solids, Atomic Data and Nuclear Data 46, 1 (1990)

  18. N. Lalović et al., Performance of the AGATA \(\gamma \)-ray spectrometer in the PreSPEC set-up at GSI. Nucl. Instrum. Methods Phys. Res. A 806, 258 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Hoischen et al., Fast timing with plastic scintillators for in-beam heavy-ion spectroscopy. Nucl. Instrum. Methods Phys. Res. A 654, 354 (2011)

    Article  ADS  Google Scholar 

  20. M. Reese et al., Position sensitivity of LYCCA time-of-flight detectors. GSI Rep. 2013–1, 185 (2013)

    Google Scholar 

  21. M. Reese, Intermediate-energy Coulomb excitation with the PreSPEC-AGATA setup, Ph.D. thesis, Technische Universität Darmstadt, (2018)

  22. C. Bertulani, A computer program for relativistic multiple Coulomb and nuclear excitation. Comput. Phys. Commun. 116, 23 (1999)

    Article  Google Scholar 

  23. C. Bertulani, DWEIKO, http://cpc.cs.qub.ac.uk/summaries/ADRN_v1_0.html. Accessed 21 Oct 2019

  24. A.E. Stuchbery et al., Measured gyromagnetic ratios and the low-excitation spectroscopy of \(^{197}\)Au. Nucl. Phys. A 486, 374 (1988)

    Article  ADS  Google Scholar 

  25. S. Agostinelli et al., Geant4 – a simulation toolkit. Nucle. Instrum. Methods Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  26. J. Allison et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  27. J. Allison et al., Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016)

    Article  ADS  Google Scholar 

  28. E. Farnea et al., Conceptual design and Monte Carlo simulations of the AGATA array. Nucl. Instrum. Methods Phys. Res. A 621, 331 (2010)

    Article  ADS  Google Scholar 

  29. H. Essel, N. Kurz, The general purpose data acquisition system MBS, 1999 IEEE Conference on Real-Time Computer Applications in Nuclear Particle and Plasma Physics 475, (1999)

  30. H. Essel et al., The new data acquisition system at GSI. IEEE Trans. Nucl. Sci. 43, 1 (1996)

    Article  Google Scholar 

  31. G.F. Knoll, Radiation detection and measurement, vol. 4 (Wiley, New York, 2010)

    Google Scholar 

  32. E. Clément, Conceptual design of the AGATA \(1\pi \) array at GANIL. Nucl. Instrum. Methods Phys. Res. A 855, 1 (2017)

    Article  ADS  Google Scholar 

  33. D. Bazzacco, Nucl. Phys. A 746, 248 (2004). (Proceedings of the 2029 Sixth International Conference on Radioactive Nuclear Beams (RNB6))

    Article  ADS  Google Scholar 

  34. R.M. Lieder et al., The TMR network project “Development of \(\gamma \)-ray tracking detectors”. Nucl. Phys. A 682, 279c (2001)

    Article  ADS  Google Scholar 

  35. A. Korichi, T. Lauritsen, Tracking \(\gamma \) rays in highly segmented HPGe detectors: a review of AGATA and GRETINA. Eur. Phys. J. A 55, 121 (2019)

    Article  ADS  Google Scholar 

  36. A. Lopez-Martens et al., \(\gamma \)-ray tracking algorithms: a comparison. Nucl. Instrum. Methods Phys. Res. A 533, 454 (2004)

    Article  ADS  Google Scholar 

  37. H. Geissel et al., Technical design report on the super-FRS. Technical report (GSI, Darmstadt, 2009)

    Google Scholar 

  38. Zs. Podolykák, The high-resolution in-flight spectroscopy (HISPEC) project at FAIR. Int. J. Mod. Phys. E 15, 1967 (2006)

Download references

Acknowledgements

The authors want to thank A. Lopez-Martens for helpful advice on possible analysis methods and U. Friman-Gayer for statistics-related advice. In addition, the authors want to thank the AGATA collaboration for providing the necessary data. This work was supported by the German BMBF under Grant Numbers 05P19RDFN1, 05P18RDFN9 and 05P19PKFNA, the Bulgarian National Science fund under grant number DN 08/23, the Swedish Research Council under contracts Nos. 2010-147, 2011-5253 and 2011-6127, HGS-HIRe and HIC for FAIR. This work has been supported by the European Community FP7–Capacities, ENSAR Contract No. 262010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Napiralla.

Additional information

Communicated by Calin Alexandru Ur

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napiralla, P., Lettmann, M., Stahl, C. et al. Benchmarking the PreSPEC@GSI experiment for Coulex-multipolarimetry on the \(\pi (p_{3/2})\rightarrow \pi (p_{1/2})\) spin-flip transition in \(^{85}\hbox {Br}\). Eur. Phys. J. A 56, 147 (2020). https://doi.org/10.1140/epja/s10050-020-00148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00148-2

Navigation