Skip to main content
Log in

Fine structure of \(\alpha \) decay from the time-dependent pairing equations

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The \(\alpha \) decay half-lives and the fine structure phenomenon are investigated with fission-like models. A superasymmetric fission path in a configuration space spanned by five degrees of freedom is determined in accordance with the least action principle. The deformation energy is evaluated within the macroscopic–microscopic approach while the inertia is obtained in the framework of the cranking model. The single particle levels schemes are calculated connecting the ground state of the parent nucleus and the asymptotic configuration of two separated nuclei. The probabilities to find different seniority configurations are obtained by solving time-dependent pairing equations generalized by including the Landau–Zener effect and the Coriolis coupling. The microscopic equations of motion for even numbers of particles are deduced, those for odd-nuclear systems being obtained in previous works. The models used in the calculations are reviewed within a detailed description. The microscopic equations of motion are solved by starting from the ground state configuration and arriving at the scission point. A description of all the possible configurations at scission together with their realization probabilities is given. By fitting the inter-nuclear velocity, the best agreement between experimental and theoretical hindrance factors is retained. The theoretical results for the \(\alpha \) decay half-lives for \(^{211,212}\)Po and \(^{211}\)Bi are compared with experimental data showing discrepancies ranging over three orders of magnitude. The accuracy of the model concerning the calculations of the half-lives for different channels is discussed. The connections between the classical theories concerning the preformation of the \(\alpha \) particle and the fission-like descriptions are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The article provides an interpretation of the alpha decay fine structure in terms of fission-like models.]

References

  1. H.J. Mang, Zur theorie des \(\alpha \)-zerfalls. Z. Phys. A 148, 582–592 (1957)

    MATH  Google Scholar 

  2. H.J. Mang, Alpha decay. Annu. Rev. Nucl. Sci. 14, 1–26 (1964)

    ADS  Google Scholar 

  3. A. Sandulescu, O. Dumitrescu, Alpha decay to vibrational states. Phys. Lett. 19, 404–407 (1965)

    ADS  Google Scholar 

  4. S. Rosenblum, Structure fine du spectre magnetique des rayons \(\alpha \) du thorium C. C.R. Acad. Sci. Paris 188, 1401–1403 (1929)

    Google Scholar 

  5. A. Bohr, P.O. Froman, B.R. Mottelson, On the fine structure in alpha decay. Dan. Mat. Fys. Medd. 29, 10 (1955)

    MATH  Google Scholar 

  6. R.G. Thomas, A formulation of the theory of alpha-particle decay from time-independent equations. Prog. Theor. Phys. 12, 253–264 (1954)

    ADS  MATH  Google Scholar 

  7. D.F. Jackson, M. Rhoades-Brown, Theories of alpha-decay. Ann. Phys. 105, 151–186 (1977)

    ADS  Google Scholar 

  8. D.S. Delion, Theory of Particle and Cluster Emission. Lecture Notes in Physics 819 (Springer, Berlin, 2010)

    MATH  Google Scholar 

  9. D.S. Delion, A. Dumitrescu, Systematics of the \(\alpha \)-decay fine structure in even-even nuclei. At. Data Nucl. Data Tabl. 101, 1–40 (2015)

    ADS  Google Scholar 

  10. D.S. Delion, Z. Ren, A. Dumitrescu, D. Ni, Coupled channels description of the \(\alpha \)-decay fine structure. J. Phys. G: Nucl. Part. Phys. 45, 053001 (2018)

    ADS  Google Scholar 

  11. G. Bencze, A. Sandulescu, Barrier penetrabilities and the alpha-nucleus potential. Phys. Lett. 22, 473–474 (1966)

    ADS  Google Scholar 

  12. K. Wildermuth, T. Kanellopoulos, The “cluster model” of the atomic nuclei. Nucl. Phys. 7, 150–162 (1958)

    Google Scholar 

  13. D.M. Dennison, Energy levels of the \(^{16}\)O nucleus. Phys. Rev. 96, 378–380 (1954)

    ADS  MathSciNet  Google Scholar 

  14. G. Röpke, A. Schnell, P. Schuck, P. Nozieres, Four-particle condensate in strongly coupled fermion systems. Phys. Rev. Lett. 80, 3177–3180 (1998)

    ADS  Google Scholar 

  15. A. Tohsaki, H. Horiuchi, G. Schuck, P. Röpke, Alpha cluster condensation in \(^{12}\)C and \(^{16}\)O. Phys. Rev. Lett. 87, 192501 (2001)

    ADS  Google Scholar 

  16. G. Röpke, P. Schuck, C. Xu, Z. Ren, M. Lyu, B. Zhou, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, Alpha-like clustering in \(^{20}\)Ne from a quartetting wave function approach. J. Low Temp. Phys. 189, 383–409 (2017)

    ADS  Google Scholar 

  17. G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, Z. Ren, A. Tohsaki, C. Xu, T. Yamada, B. Zhou, Nuclear clusters bound to doubly magic nuclei: the case of \(^{212}\)Po. Phys. Rev. C 90, 034304 (2014)

    ADS  Google Scholar 

  18. C. Xu, Z. Ren, G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, B. Zhou, \(\alpha \)-decay width of \(^{212}\)Po from a quarteting wave function approach. Phys. Rev. C 93, 011306(R) (2016)

    ADS  Google Scholar 

  19. C. Xu, G. Röpke, P. Schuck, Z. Ren, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, B. Zhou, \(\alpha \)-cluster formation and decay in the quarteting wave function approach. Phys. Rev. C 95, 061306(R) (2017)

    ADS  Google Scholar 

  20. V.V. Baran, D.S. Delion, Analytical approach for the quartet condensation model. Phys. Rev. C 99, 031303(R) (2019)

    ADS  Google Scholar 

  21. J. Dukelsky, G. Röpke, P. Schuck, Generalized Brückner–Hartree–Fock theory and self-consistent RPA. Nucl. Phys. A 628, 17–40 (1998)

    ADS  Google Scholar 

  22. M. Beyer, S.A. Sofianos, C. Kuhrts, G. Röpke, P. Schuck, The \(\alpha \)-particle in nuclear matter. Phys. Lett. B 488, 247–253 (2000)

    ADS  Google Scholar 

  23. O. Dumitrescu, New superconducting phase in nuclei. Sov. J. Part. Nucl. 23, 187–209 (1992)

    Google Scholar 

  24. M. Apostol, I. Bulboaca, F. Carstoiu, O. Dumitrescu, M. Horoi, Alpha-like four nucleon correlations in superfluid phases of atomic nuclei. Nucl. Phys. A 470, 64–78 (1987)

    ADS  Google Scholar 

  25. D.N. Poenaru, K. Depta, M. Ivascu, D. Mazilu, A. Sandulescu, W. Greiner, Calculated half-lives and kinetic energies for spontaneous emission of heavy ions from nuclei. At. Data Nucl. Data Tabl. 34, 423–538 (1986)

    ADS  Google Scholar 

  26. A. Sandulescu, W. Greiner, Cluster decays. Rep. Prog. Phys. 55, 1423–1481 (1992)

    ADS  Google Scholar 

  27. D.N. Poenaru, M. Ivascu, A. Sandulescu, Alpha decay as a fission-like process. J. Phys. G: Nucl. Phys. 5, L169–L173 (1979)

    ADS  Google Scholar 

  28. A. Zdeb, M. Warda, K. Pomorski, Half-lives for \(\alpha \) and cluster radioactivity within a Gamow-like model. Phys. Rev. C 87, 024308 (2013)

    ADS  Google Scholar 

  29. D.L. Hill, A.J. Wheeler, Nuclear constitution and the interpretation of fission phenomena. Phys. Rev. 89, 1102 (1953)

    ADS  MATH  Google Scholar 

  30. M. Mirea, Pairing gaps and Fermi energies at scission for \(^{296}\)Lv alpha-decay. Eur. Phys. J. A 51, 36 (2015)

    ADS  Google Scholar 

  31. M. Mirea, Fine structure of \(\alpha \) decay from the variational principle. Phys. Rev. C 96, 064607 (2017)

    ADS  Google Scholar 

  32. M. Mirea, Fine structure of \(^{211}\)Bi \(\alpha \)-decay from Coriolis coupling. EPL 124, 12001 (2018)

    ADS  Google Scholar 

  33. M. Mirea, Time-dependent pairing equations for seniority-one nuclear systems. Phys. Rev. C 78, 044618 (2008)

    ADS  Google Scholar 

  34. M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Funny Hills: the shell-correction approach to nuclear shell effects and its application to the fission process. Rev. Mod. Phys. 44, 320–405 (1972)

    ADS  Google Scholar 

  35. M. Warda, L.M. Robledo, Microscopic description of cluster radioactivity in actinide nuclei. Phys. Rev. C 84, 044608 (2011)

    ADS  Google Scholar 

  36. M. Warda, A. Zdeb, L.M. Robledo, Cluster radioactivity in superheavy nuclei. Phys. Rev. C 98, 041602(R) (2018)

    ADS  Google Scholar 

  37. N. Schunck, L.M. Robledo, Microscopic theory of nuclear fission: a review. Rep. Prog. Phys. 79, 116301 (2016)

    ADS  Google Scholar 

  38. J.R. Nix, Calculation of fission barriers for heavy and superheavy nuclei. Ann. Rev. Nucl. Sci. 22, 65–120 (1972)

    ADS  Google Scholar 

  39. A. Sandulescu, M. Mirea, D.S. Delion, Microscopic description of the alpha-decay of a superheavy element. EPL 101, 62001 (2013)

    ADS  Google Scholar 

  40. M. Mirea, A. Sandulescu, D.S. Delion, Predictions for \(^{232}\)U cluster-decays within the macroscopic-microscopic approximation. Nucl. Phys. A 870–871, 23–41 (2011)

    ADS  Google Scholar 

  41. M. Mirea, A. Sandulescu, D.S. Delion, \(^{238}\)Pu cluster decay in the macroscopic–microscopic approach. Eur. Phys. J. A 48, 86 (2012)

    ADS  Google Scholar 

  42. G.G. Adamian, N.V. Antonenko, H. Lenske, S.V. Tolokonnikov, E.E. Saperstein, Isotopic trends of nuclear surgace properties of spherical nuclei. Phys. Rev. C 94, 054309 (2016)

    ADS  Google Scholar 

  43. D.S. Delion, S. Peltonen, J. Suhonen, Systematics of the \(\alpha \)-decay to rotational states. Phys. Rev. C 73, 014315 (2006)

    ADS  Google Scholar 

  44. P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, Nuclear ground-state masses and deformations. Atom. Data. Nucl. Data. Tabl. 59, 185–381 (1995)

    ADS  Google Scholar 

  45. P. Moller, J.R. Nix, W.J. Swiatecki, Calculated fission properties of the heaviest elements. Nucl. Phys. A 469, 1–50 (1987)

    ADS  Google Scholar 

  46. P. Moller, J.R. Nix, Atomic masses and nuclear ground-state deformations calculated with a new macroscopic–microscopic model. Atom. Data. Nucl. Data. Tabl. 26, 165–196 (1981)

    ADS  Google Scholar 

  47. K.T.R. Davies, J.R. Nix, Calculation of moments, potentials, and energies for an arbitrarily shaped diffuse-surface nuclear density distribution. Phys. Rev. C 14, 1977–1994 (1976)

    ADS  Google Scholar 

  48. H.J. Krappe, J.R. Nix, W.D. Myers, A.J. Sierk, Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20, 992–1013 (1979)

    ADS  Google Scholar 

  49. V.M. Strutinsky, Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95, 420–442 (1967)

    ADS  Google Scholar 

  50. M. Mirea, Cranking inertia of odd nuclei from the time-dependent pairing equations: application to Th cold fission. Phys. Rev. C 100, 014607 (2019)

    ADS  Google Scholar 

  51. K. Pomorski, F. Ivanyuk, Pairing correlations and fission barrier heights. Int. J. Mod. Phys. E 18, 900–906 (2009)

    ADS  Google Scholar 

  52. M. Mirea, Pairing correction within the density-dependent delta interaction. Int. J. Mod. Phys. E 27, 1850076 (2018)

    ADS  Google Scholar 

  53. W.D. Myers, W.J. Swiatecki, Nuclear masses and deformations. Nucl. Phys. 81, 1–60 (1966)

    Google Scholar 

  54. B. Nerlo-Pomorska, K. Pomorski, On the average pairing energy in nuclei. Int. J. Mod. Phys. E 16, 328–336 (2007)

    ADS  Google Scholar 

  55. S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, T. Werner, Single-particle energies, wave functions, quadrupole moments, and \(g\)-factors in an axially deformed Woods–Saxon potential with applications to the two-centre-type nuclear problems. Comput. Phys. Comun. 46, 379–399 (1987)

    ADS  Google Scholar 

  56. P. Holzer, U. Mosel, W. Greiner, Double-centre oscillator and its application to fission. Nucl. Phys. A 138, 241–252 (1969)

    ADS  Google Scholar 

  57. J. Maruhn, W. Greiner, The asymmetric two center shell model. Z. Phys. 251, 431–457 (1972)

    ADS  Google Scholar 

  58. E. Badralexe, A. Sandulescu, Potentialul de oscilator cu doua centre. St. Cerc. Fiz. 25, 1087–1114 (1973)

    Google Scholar 

  59. E. Badralexe, M. Rizea, A. Sandulescu, Symmetric two-center model wave functions. Rev. Roum. Phys. 19, 63–80 (1974)

    Google Scholar 

  60. M. Mirea, superasymmetric two-center shell model for spontaneous heavy-ionemission. Phys. Rev. C 54, 302–314 (1996)

    ADS  Google Scholar 

  61. M. Mirea, Energy partition in low energy fission. Phys. Rev. C 83, 054608 (2011)

    ADS  Google Scholar 

  62. M. Mirea, Microscopic description of energy partition in fission fragments. Phys. Lett. B 717, 252–256 (2012)

    ADS  Google Scholar 

  63. M. Mirea, Microscopic description of the odd-even effect in cold fission. Phys. Rev. C 89, 034623 (2014)

    ADS  Google Scholar 

  64. H.C. Pauli, On the shell model and its application to the deformation energy of heavy nuclei. Phys. Rep. 7, 35–100 (1973)

    ADS  Google Scholar 

  65. K.-H. Schmidt, J. Beatriz, Review on the progress in nuclear fission-experimental methods and theoretical descriptions. Rep. Prog. Phys. 81, 106301 (2018)

    ADS  Google Scholar 

  66. D.R. Inglis, Particle derivation of nuclear rotation properties associated with a surface wave. Phys. Rev. 96, 1059 (1959)

    ADS  MATH  Google Scholar 

  67. M. Mirea, Nuclear Inertia from the time dependent pairing equations. J. Phys. G Nucl. Part. Phys. 43, 105103 (2016)

    ADS  Google Scholar 

  68. W. Brodzinski, M. Kowal, J. Skalski, P. Jachimowicz, Fission of SHN and its hindrance: odd nuclei and isomers. Acta Phys. Pol. B 49, 621–630 (2018)

    ADS  Google Scholar 

  69. T. Ledergerber, H.-C. Pauli, On the dynamics on fission: the role of reflection symmetry in the nuclear shape. Nucl. Phys. A 207, 1–32 (1973)

    ADS  Google Scholar 

  70. O. Prior, F. Boehm, S.G. Nilsson, Collective gyromagnetic ratios of deformed nuclei. Nucl. Phys. A 110, 257–272 (1968)

    ADS  Google Scholar 

  71. R. Rodríguez-Guzmán, L.M. Robledo, Microscopic description of fission in nobelium isotopes with the gogny-d1m energy density functional. Eur. Phys. J. A 52, 348 (2016)

    ADS  Google Scholar 

  72. S. Bjornholm, J.E. Lynn, The double-humped fission barrier. Rev. Mod. Phys. 52, 725–931 (1980)

    ADS  Google Scholar 

  73. M. Mirea, Complex potentials in fission. Rom. J. Phys. 64, 305 (2019)

    Google Scholar 

  74. J.A. Wheeler, Nuclear fission and nuclear stability, Niels Bohr and the Development of Physics (London, Great Britain) (Pergamon Press Ltd, Oxford, 1955), pp. 163–184

    Google Scholar 

  75. A. Astier, P. Petkov, M.-G. Porquet, D.S. Delion, P. Schuck, Coexistence of \(\alpha +^{208}\)Pb cluster structures and single-particle excitations in \(^{212}_{84}\)Po\(_{128}\). Eur. Phys. J. A 46, 165–185 (2010)

    ADS  Google Scholar 

  76. D.M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, The Ame 2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2017)

    ADS  Google Scholar 

  77. A. Ritz, Recommended energy and Intensity values of alpha particles from radioactive decay. Atom. Data Nucl. Data Tabl. 47, 205–239 (1991)

    ADS  Google Scholar 

  78. P. Moller, J.R. Nix, Calculated half-lives of superhavy nuclei near \(^{354}\)126. Phys. Rev. Lett. 37, 1461–1464 (1976)

    ADS  Google Scholar 

  79. J. Dudek, W. Dudek, E. Ruchowska, J. Skalski, Systematically too low values of the cranking model collective inertia parameters. Z. Phys. A 294, 341–350 (1980)

    ADS  Google Scholar 

  80. L. Landau, Zur theorie der energieubertragnung II. Phys. Z. Sowjet. 2, 46 (1932)

    MATH  Google Scholar 

  81. C. Zener, Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A 137, 696–702 (1932)

    ADS  MATH  Google Scholar 

  82. A. Bohr, B.R. Mottelson, Nuclear Structure, Volume II: Nuclear Deformations (World Scientific Publishing, Singapore, 1998)

    Google Scholar 

  83. M. Mirea, New dynamical pair breaking effect. Phys. Lett. B 680, 316–320 (2009)

    ADS  Google Scholar 

  84. J.Y. Park, W. Greiner, W. Scheid, Signatures of molecular single-particle states by level crossings in heavy ion collisions. Phys. Rev. C 21, 958–962 (1980)

    ADS  Google Scholar 

  85. A. Thiel, The Landau–Zener effect in nuclear molecules. J. Phys. G 16, 867–910 (1990)

    ADS  Google Scholar 

  86. M. Mirea, Fine structure of \(\alpha \) decay in odd nuclei. Phys. Rev. C 63, 034603 (2001)

    ADS  Google Scholar 

  87. P. Ring, P. Schuck, The Nuclear Many Body Problem (Springer, New York, 1980)

    Google Scholar 

  88. E. Osnes, J. Rekstad, O.K. Gjotterud, On the recoil term in the particle-rotor model. Nucl. Phys. A 253, 45–54 (1975)

    ADS  Google Scholar 

  89. J. Rekstad, T. Engeland, E. Osnes, Evidence for the two-body nature of the recoil term in the particle-rotor model. Nucl. Phys. A 330, 367–380 (1979)

    ADS  Google Scholar 

  90. S.E. Koonin, J.R. Nix, Microscopic calculation of nuclear dissipation. Phys. Rev. C 13, 209–228 (1976)

    ADS  Google Scholar 

  91. J. Blocki, H. Flocard, Simple dynamical models including pairing residual interaction. Nucl. Phys. A 273, 45–60 (1976)

    ADS  Google Scholar 

  92. S. Yang, C. Xu, G. Röpke, P. Schuck, Z. Ren, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, B. Zhou, \(\alpha \) decay to a doubly magic core in the quartetting wave function approach. Phys. Rev. C 101, 024316 (2020)

    ADS  Google Scholar 

  93. P.M. Jacobs, U. Smilansky, Comments on the description of sub-barrier fusion in terms of dissipative tunneling. Phys. Lett. B 127, 313–316 (1983)

    ADS  Google Scholar 

  94. M. Tokieda, K. Hagino, Quantum tunneling with friction. Phys. Rev. C 95, 054604 (2017)

    ADS  Google Scholar 

  95. A. Góźdź, K. Pomorski, M. Brack, E. Werner, The mass parameters for the average mean field potential. Nucl. Phys. A 442, 26–49 (1985)

    ADS  Google Scholar 

  96. E.H. Hauge, J.A. Stovneng, Tunneling times: a critical review. Rev. Mod. Phys. 61, 917–936 (1989)

    ADS  Google Scholar 

  97. V.S. Olkhovsky, E. Recami, Recent developments in the time analysis of tunneling processes. Phys. Rep. 214, 339–356 (1992)

    ADS  Google Scholar 

  98. O. Serot, N. Carjan, D. Strottman, Transient behaviour in quantum tunneling: time-dependent approach to alpha decay. Nucl. Phys. A 569, 562–574 (1994)

    ADS  Google Scholar 

  99. A. Carjan, O. Serot, D. Strottman, Time-dependent schrödinger approach to sub-barrier fission. Z. Phys. A 349, 353–355 (1994)

    ADS  Google Scholar 

  100. W. Greiner, J.Y. Park, W. Scheid, Nuclear Molecules (World Scientific Publishing, Singapore, 1995)

    Google Scholar 

  101. M. Mirea, A. Sandulescu, Fission times and pairing properties. Rom. Rep. Phys. 70, 201 (2018)

    Google Scholar 

  102. D. Bai, Z. Ren, G. Röpke, \(\alpha \) clustering from the quartet model. Phys. Rev. C 99, 034305 (2019)

    ADS  Google Scholar 

  103. F.G. Kondev, S. Lalkovski, Nuclear data sheets for \(A\)=207. Nucl. Data Sheets 112, 707–853 (2011)

    ADS  Google Scholar 

  104. L.J. Jardine, Decays of \(^{211}\)At, \(^{211}\)Po, and \(^{207}\)Bi. Phys. Rev. C 11, 1385 (1975)

    ADS  Google Scholar 

  105. S.A. Gurvitz, Novel approach to tunneling problems. Phys. Rev. C 38, 1747–1759 (1988)

    ADS  Google Scholar 

  106. D. Deng, Z. Ren, D. Ni, Y. Qian, Realistic \(\alpha \) preformation factors of odd-\(A\) and odd-odd nuclei within the cluster-formation model. J. Phys. G Nucl. Part. Phys. 42, 075106 (2015)

    ADS  Google Scholar 

  107. W.M. Seif, A. Adel, Additional hindrance of unfavored \(\alpha \) decay between states of different parity. Phys. Rev. C 99, 044311 (2019)

    ADS  Google Scholar 

  108. A. Adel, T. Alharbi, Systematics of \(\alpha \)-decay fine structure in odd-mass nuclei based on a finite range nucleon-nucleon interaction. Nucl. Phys. A 975, 1–18 (2018)

    ADS  Google Scholar 

  109. V. Dehghani, S.A. Alavi, K. Benam, Role of constant value of surface diffuseness in alpha decay half-lives of superheavy nuclei Systematics. Mod. Phys. Lett. A 33, 1850080 (2018)

    ADS  Google Scholar 

  110. G.M.C.V. Bai, R.N. Agnes, Theoretical studies on the fine structure of \(\alpha \) decay for even-odd and even-even isotopes of Cm, Cf, Fm and No nuclei. Pramana 93, 39 (2019)

    ADS  Google Scholar 

  111. C.I. Anghel, I. Silisteanu, \(\alpha \) decay and spontaneous fission half-lives of nuclei around \(^{270}\)Hs. Phys. Rev. C 95, 034611 (2017)

    ADS  Google Scholar 

  112. A.O. Silisteanu, C.I. Anghel, I. Silisteanu, Half-lives of nuclei around the superheavy nucleus \(^{304}\)120. Rom. J. Phys. 63, 302 (2018)

    Google Scholar 

  113. C.I. Anghel, I. Silisteanu, M. Zadehrafi, Decay properties of superheavy nuclei \(Z\)=118-122 and \(N\)=182-186. Rom. Rep. Phys. 71, 213 (2019)

    Google Scholar 

  114. A. Soylu, Search for decay modes of heavy and superheavy nuclei. Chin. Phys. C 43, 074102 (2019)

    ADS  Google Scholar 

  115. M. Ismail, A. Adel, The isovector nuclear density and improved description of cluster decay half-lives using isospin-dependent \(NN\) interaction. J. Phys. G Nucl. Part. Phys. 44, 125106 (2017)

    ADS  Google Scholar 

  116. H.C. Manjunatha, N. Sowmya, A.M. Nagaraja, Semi-empirical formula for alpha and cluster decay half-lives of superheavy nuclei. Mod. Phys. Lett. A 35, 2050016 (2020)

    ADS  Google Scholar 

  117. E. Olsen, W. Nazarewicz, \(\alpha \)-decay energies of superheavy nuclei: systematics trends. Phys. Rev. C 99, 014317 (2019)

    ADS  Google Scholar 

  118. H.M. Devaraja, Y.K. Gambhir, A. Bhagwat, M. Gupta, S. Heinz, G. Munzenberg, Half lives and \(Q\) values of nuclei appearing in the \(\alpha \)-decay chains of recently reported new isotopes. Rom. J. Phys. 63, 304 (2018)

    Google Scholar 

  119. N.G. Kelnar, H.M. Castaneda, M. Nowakowski, Quantum time scales in alpha tunneling. Europhys. Lett. 85, 20006 (2009)

    ADS  Google Scholar 

  120. S.A. Giuliani, L.M. Robledo, Non-perturbative collective inertias for fission: a comparatice study. Phys. Lett. B 787, 134–140 (2018)

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

I thank Dr. D.S. Delion, Dr. A. Dumitrescu, and Dr. V.V. Baran, for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mirea.

Additional information

Communicated by David Blaschke

Appendix A: Matrix elements

Appendix A: Matrix elements

Using the property

$$\begin{aligned} I_{\pm }{{\mathcal {D}}}^I_{M\varOmega }(\omega )= \sqrt{(I\pm \varOmega )(I\mp \varOmega +1)}{{\mathcal {D}}}^I_{M\varOmega \mp 1}(\omega ), \end{aligned}$$
(A.1)

the relevant matrix elements needed to develop the functional (46) can be obtained. They are given by the following identities:

$$\begin{aligned}&\begin{array}{ll} &{}\left\langle \sum \nolimits _Ic^I_{0}{{\mathcal {D}}}^I_{M0}\prod \nolimits _{k}\left( u_{k(0)}+v_{k(0)}a_{k}^{+}a_{{\bar{k}}}^{+}\right) \right. \\ &{}\qquad \times \left| \sum \nolimits _{k}\epsilon _{k}\left( a_{k}^{+}a_{k}+a_{{\bar{k}}}^{+}a_{{\bar{k}}}\right) - G\sum \nolimits _{k,l}a_{k}^{+}a_{{\bar{k}}}^{+}a_{l}a_{{\bar{l}}}\right| \\ &{}\qquad \times \left. \sum \nolimits _{I'} c^{I'}_{0}{{\mathcal {D}}}^{I'}_{M0}\prod \nolimits _{k'}\left( u_{k'(0)}+v_{k'(0)}a_{k'}^{+}a_{{\bar{k}}'}^{+}\right) \right\rangle \\ &{}\quad = \sum \nolimits _I\frac{8\pi ^2}{2I+1}|c^I_{0}|^{2}\left[ 2\sum \nolimits _{k}\mid v_{k(0)}\mid ^{2}\epsilon _{k}\right. \\ &{}\qquad \left. +G\mid \sum \nolimits _{k}u_{k(0)}v_{k(0)}\mid ^{2}-G\sum \nolimits _{k}\mid v_{k(0)}\mid ^{4}\right] \delta _{II'}, \end{array} \end{aligned}$$
(A.2)
$$\begin{aligned}&\begin{array}{ll} &{}\left\langle \sum \nolimits _I\sum \nolimits _{j,l\ne j}c^I_{jl}{{\mathcal {D}}}^I_{M(\varOmega _j-\varOmega _l)} a_{j}^{+}a_{{\bar{l}}}^{+}\right. \\ &{}\qquad \left. \times \prod \nolimits _{k\ne j,l} \left( u_{k(jl)}+v_{k(jl)}a_{k}^{+}a_{{\bar{k}}}^{+}\right) \right. \\ &{}\qquad \times \left| \sum \nolimits _{k}\epsilon _{k}(a_{k}^{+}a_{k}+a_{{\bar{k}}}^{+}a_{{\bar{k}}}) - G\sum \nolimits _{k,l}a_{k}^{+}a_{{\bar{k}}}^{+}a_{l}a_{{\bar{l}}}\right| \\ &{}\qquad \times \sum \nolimits _{I'}\sum \nolimits _{j',l'\ne j'}c^{I'}_{j'l'}{{\mathcal {D}}}^{I'}_{M(\varOmega _j'-\varOmega _l')}a_{j'}^{+}a_{{\bar{l}}'}^{+} \\ &{}\qquad \left. \times \prod \nolimits _{k'\ne j',l'} \left( u_{k'(j'l')}+v_{k'(j'l')}a_{k'}^{+}a_{{\bar{k}}'}^{+}\right) \right\rangle \\ &{}\quad =\sum \nolimits _I\frac{8\pi ^2}{2I+1} \sum \nolimits _{j,l\ne j}\mid c^I_{jl}\mid ^{2}\left[ 2\sum \nolimits _{k\ne j,l} \mid v_{k(jl)}\mid ^{2}\epsilon _{k}\right. \\ &{}\qquad +\epsilon _{j} +\epsilon _{l} +G\left| \sum \nolimits _{k\ne j,l}u_{k(jl)}v_{k(jl)}\right| ^{2}\\ &{}\qquad \left. - G\sum \nolimits _{k\ne jl}| v_{k(jl)}|^{4}\right] \delta _{II'}\delta _{(\varOmega _j-\varOmega _l) (\varOmega _{j'}-\varOmega _{l'})}, \end{array} \end{aligned}$$
(A.3)
$$\begin{aligned}&\begin{array}{ll} &{}\left\langle \sum \nolimits _{I}c^{I}_{0}{{\mathcal {D}}}^{I}_{M0}\prod \nolimits _{k}(u_{k(0)}+v_{k(0)}a_{k}^{+}a_{{\bar{k}}}^{+})\left| {\partial \over \partial t} \right| \right. \\ &{}\qquad \left. \times \sum \nolimits _{I'} c^{I'}_{0}{{\mathcal {D}}}^{I'}_{M0} \prod \nolimits _{k'}\left( u_{k'(0)}+v_{k'(0)}a_{k'}^{+}a_{{\bar{k}}'}^{+}\right) \right\rangle \\ &{}\quad =\sum \nolimits _I\frac{8\pi ^2}{2I+1}\left[ c_{0}^{I*}\dot{c}^{I}_{0}\right. \\ &{}\qquad \left. +|c_{0}^I|^{2}\sum \nolimits _{k}\left( u_{k(0)}\dot{u}_{k(0)}+ v_{k(0)}^{*}\dot{v}_{k(0)}\right) \right] \delta _{II'}, \end{array} \end{aligned}$$
(A.4)
$$\begin{aligned}&\begin{array}{ll} &{}\langle \sum \nolimits _{I}\sum \nolimits _{j,l\ne j}c^I_{jl}{{\mathcal {D}}}^I_{M(\varOmega _j-\varOmega _l)}a_{j}^{+}a_{{\bar{l}}}^{+}\\ &{}\qquad \times \prod \nolimits _{k\ne j,l} (u_{k(jl)}+v_{k(jl)}a_{k}^{+}a_{{\bar{k}}}^{+})| {\partial \over \partial t} |\\ &{}\qquad \times \sum \nolimits _{I'}\sum \nolimits _{j',l'\ne j'}c^{I'}_{j'l'}{{\mathcal {D}}}^{I'}_{M(\varOmega _j'-\varOmega _l')}a_{j'}^{+}a_{{\bar{l}}'}^{+}\\ &{}\qquad \times \prod \nolimits _{k'\ne j',l'} (u_{k'(j'l')}+v_{k'(j'l')}a_{k'}^{+}a_{{\bar{k}}'}^{+})\rangle \\ &{}\quad =\sum \nolimits _I\frac{8\pi ^2}{2I+1}\sum \nolimits _{j,l\ne j}[c_{jl}^{I*}\dot{c}_{jl}^I\\ &{}\qquad + |c_{jl}^I|^{2}\sum \nolimits _{k\ne j,l}(u_{k(jl)}\dot{u}_{k(jl)}+ v_{k(jl)}^{*}\dot{v}_{k(jl)})]\\ &{}\qquad \times \delta _{II'} \delta _{(\varOmega _j-\varOmega _l)(\varOmega _{j'}- \varOmega _{l'})}, \end{array} \end{aligned}$$
(A.5)
$$\begin{aligned}&\begin{array}{ll} &{}\langle \sum \nolimits _I c^I_{0}{{\mathcal {D}}}^I_{M0}\prod \nolimits _{k}(u_{k(0)}+v_{k(0)}a_{k}^{+}a_{{\bar{k}}}^{+})\\ &{}\qquad \times | \sum \nolimits _{i,j\ne i}h_{ij}\alpha _{i(0)}\alpha _{{\bar{j}}(0)}\\ &{}\qquad \times \prod \nolimits _{k\ne i,j}\alpha _{k(0)}a_{k}^{+}a_{k}\alpha ^{+}_{k(ij)} |\\ &{}\qquad \times \sum \nolimits _{I'}\sum \nolimits _{j',l'\ne j'}c^{I'}_{j'l'}{{\mathcal {D}}}^{I'}_{M(\varOmega _{j'}-\varOmega _{l'})}a_{j'}^{+}a_{{\bar{l}}'}^{+}\\ &{}\qquad \times \prod \nolimits _{k'\ne j',l'} (u_{k'(j'l')}+v_{k'(j'l')}a_{k'}^{+}a_{{\bar{k}}'}^{+})\rangle \\ &{}\quad =\sum \nolimits _I\frac{8\pi ^2}{2I+1} \sum \nolimits _{j,l\ne j}h_{jl}c_{0}^{I*}c_{jl}^I\delta _{II'}\delta _{0(\varOmega _j-\varOmega _l)}, \end{array} \end{aligned}$$
(A.6)
$$\begin{aligned}&\begin{array}{ll} &{}\langle \sum \nolimits _I\sum \nolimits _{j,l\ne j}c_{jl}{{\mathcal {D}}}^{I}_{M(\varOmega _j-\varOmega _l)} a_{j}^{+}a_{{\bar{l}}}^{+}\\ &{}\qquad \times \prod \nolimits _{k\ne j,l} (u_{k(jl)}+v_{k(jl)}a_{k}^{+}a_{{\bar{k}}}^{+})| \sum \nolimits _{i,j\ne i}h_{ij}\alpha _{i(0)}^{+}\alpha _{{\bar{j}}(0)}^{+}\\ &{}\qquad \times \prod \nolimits _{k\ne i,j}\alpha _{k(ij)}a_{k}^{+}a_{k}\alpha ^{+}_{k(0)} |\\ &{}\qquad \times \sum \nolimits _{I'} c_{0}{{\mathcal {D}}}^{I'}_{M0}\prod \nolimits _{k'}(u_{k'(0)}+v_{k'(0)}a_{k'}^{+}a_{{\bar{k}}'}^{+})\rangle \\ &{}\quad =\sum \nolimits _I\frac{8\pi ^2}{2I+1}\sum \nolimits _{j,l\ne j}h_{jl}c_{0}^Ic_{jl}^{I*}\delta _{II'}\delta _{0(\varOmega _j-\varOmega _l)}, \end{array} \end{aligned}$$
(A.7)
$$\begin{aligned}&\begin{array}{ll} &{}\langle \sum \nolimits _I c^I_{0}{{\mathcal {D}}}^I_{M0}\prod \nolimits _{k}(u_{k(0)}+v_{k(0)}a_{k}^{+}a_{{\bar{k}}}^{+}) |I_{\pm }j_{\mp }|\\ &{}\qquad \times \sum \nolimits _{I'}\sum \nolimits _{j',l'\ne j'}c^{I'}_{j'l'}{{\mathcal {D}}}^{I'}_{M(\varOmega _{j'}-\varOmega _{l'})}a_{j'}^{+}a_{{\bar{l}}'}^{+}\\ &{}\qquad \times \prod \nolimits _{k'\ne j',l'} (u_{k'(j'l')}+v_{k'(j'l')}a_{k'}^{+}a_{{\bar{k}}'}^{+})\rangle \\ &{}\quad =\sum \nolimits _I\frac{8\pi ^2}{2I+1}\sqrt{[I\mp (\varOmega _j{-}\varOmega _l)][I{\pm }(\varOmega _j{-}\varOmega _l){+}1]}c_{0}^{I*}c_{jl}^{I}\\ &{}\qquad \times [u_{j(0)}v_{l(0)}^*\langle a_l^+|j_{\mp }|a_j^+\rangle \\ &{}\qquad +u_{l(0)}v_{j(0)}^*\langle a_{\bar{j}}^+|j_{\mp }|a_{\bar{l}}^+\rangle ]P_{0jl} \delta _{\pm 1(\varOmega _j-\varOmega _l)}, \end{array} \end{aligned}$$
(A.8)

and

$$\begin{aligned}&\langle \sum \nolimits _{I}\sum \nolimits _{j,l\ne j}c^{I}_{jl}{{\mathcal {D}}}^{I}_{M(\varOmega _{j}-\varOmega _{l})}a_{j}^{+}a_{{\bar{l}}}^{+}\nonumber \\&\qquad \times \prod \nolimits _{k\ne j,l} (u_{k(jl)}+v_{k(jl)}a_{k}^{+}a_{{\bar{k}}}^{+})\nonumber \\&\qquad \times |I_{\pm }j_{\mp }|\sum \nolimits _{I'} c^{I'}_{0}{{\mathcal {D}}}^{I'}_{M0}\prod \nolimits _{k'}(u_{k'(0)}+v_{k'(0)}a_{k'}^{+}a_{{\bar{k}}'}^{+})\rangle \nonumber \\&\quad =\sum \nolimits _I\frac{8\pi ^2}{2I+1}\sqrt{[I\mp \varOmega _0][I\pm \varOmega _0+1]}c_{jl}^{I*}c_{0}^{I}\nonumber \\&\qquad \times {[}u_{l(0)}v_{j(0)}\langle a_{{{\bar{l}}}}^+|j_{\mp }|a_{{\bar{j}}}^+\rangle \nonumber \\&\qquad +u_{j(0)}v_{l(0)}\langle a_{{j}}^+|j_{\mp }|a_{{l}}^+\rangle ]P_{jl0} \delta _{\mp 1(\varOmega _j-\varOmega _l)}. \end{aligned}$$
(A.9)

For the seniority-0 configuration in the ground state, \(I=\) 0 and \(\varOmega _0=\) 0. In the previous relations, the overlaps between the Bogoliubov wave functions are denoted by:

$$\begin{aligned} P_{0jl}=P_{jl0}^*=\prod _{k\ne j,l}(u_{k(jl)}u_{k{0}}+v_{k(jl)}v_{k(0)}^*). \end{aligned}$$
(A.10)

Also, the absolute values related to the Lagrange multiplier are written as:

$$\begin{aligned} \begin{array}{ll} &{}\left\langle \varphi _{IM}\left| -\lambda | N_2{{\hat{N}}}_1-N_1{{\hat{N}}}_2|\right| \varphi _{IM} \right\rangle \\ &{}\quad =-s\lambda \left[ |c_0|^2\left( \sum \nolimits _{k_1} |v_{k_1(0)}|^2N_{2}-\sum \nolimits _{k_2} |v_{k_2(0)}|^2N_{2}\right) \right. \\ &{}\qquad \left. +|c_{jl}|^2\left( \sum \nolimits _{k_1\ne j,l} |v_{k_1(jl)}|^2N_{2}\right. \right. \\ &{}\qquad \left. \left. -\sum \nolimits _{k_2\ne j,l} |v_{k_2(jl)}|^2N_{1}+N_j+N_l\right) \right] , \end{array} \end{aligned}$$
(A.11)

where \(N_{j,l}=-N_1\) or \(N_2\), depending on the location of the levels j or l in the second or the first well after scission, respectively. The sign \(s=\mp 1\) ensures that the expression in the right side of the equation is negative.

Other matrix elements are trivial or obsolete. The derivatives of the BCS occupation amplitudes can be obtained by using the time-dependent pairing equations (55). The following energy terms are obtained:

$$\begin{aligned} \begin{array}{ll} &{}T_{k(jl)}={i\hbar \over 2}(v_{k(jl)}^{*}\dot{v}_{k(jl)}-\dot{v}_{k(jl)}^{*}v_{k(jl)})\\ &{}\qquad =2|v_{k(jl)}|^2(\epsilon _{k}-s_k\lambda )-2G|v_{k(jl)}|^{4}\\ &{}\quad \qquad +\mathfrak {R}\left\{ \varDelta ^*_{0} \left( \frac{|v_{k(jl)}|^4}{u_{k(jl)}v^*_{k(jl)}}-u_{k(jl)}v_{k(jl)}\right) \right\} , \end{array} \end{aligned}$$
(A.12)

where \(\varDelta _{k(0)}=G|\sum \nolimits _{k\ne j,l}u_{k(jl)}v_{k(jl)}|^2\). With the previous identities, the expected value of the functional (54) is then obtained by introducing the many-body energies (49) and (50).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirea, M. Fine structure of \(\alpha \) decay from the time-dependent pairing equations. Eur. Phys. J. A 56, 151 (2020). https://doi.org/10.1140/epja/s10050-020-00163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00163-3

Navigation