Skip to main content
Log in

Approach to Numerical Implementation of the Drift-Diffusion Model of Field Effects Induced by a Moving Source

  • Published:
Russian Physics Journal Aims and scope

An approach to numerical implementation of the diffusion-drift model is described with application to problem of estimating field effects induced in an object by a concentrated moving source. The mathematical model is formalized using initial boundary-value problem for multidimensional evolution equation of convection-reaction-diffusion type. The computational algorithm is based on modification of the predictor-corrector scheme intended for solving the diffusion problem and approximation of the drift component by the Roberts–Weiss scheme. The mathematical model has been implemented in the Matlab software package. The results of computing experiments attendant to variations of the control model parameters are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion Reaction Equations Series, Springer, Berlin (2003).

  2. D. Otten, Mathematical Models of Reaction Diffusion Systems, Their Numerical Solutions and the Freezing Method with Comsol Multiphysics, Bielefeld University Press, Bielefeld (2000).

  3. J. B. Drake, Climate Modeling for Scientists and Engineers, University of Tennessee, Knoxville (2014).

  4. G. I. Montecinos, Numerical methods for advection-diffusion-reaction equations and medical applications, PhD Thesis, University of Trento (2014).

  5. X. Tan, e-Journal Prorab, No. 145, 1–24 (2013).

  6. L. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization, World Scientific Publishing, London (2000).

    Book  Google Scholar 

  7. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington (1980).

    MATH  Google Scholar 

  8. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods of Solving Convection-Diffusion Problems, Editorial URSS, Moscow (1999).

    Google Scholar 

  9. Y. E. Jin, J. Jiang, C. M. Hou, and D. H. Guan, J. Inform. Comput. Sci., 18, 5579–5586 (2012).

    Google Scholar 

  10. O. V. Shishkin, Sibirskii Matem. Zh., 48, No. 6, 1422–1428 (2007).

    Google Scholar 

  11. N. M. Afanas’eva, P. N. Vabishchevich, and M. V. Vasil’eva, Izv. Vyssh. Uchebn. Zaved. Matem., No. 3, 3–15 (2013).

  12. L. A. Krukier, O. A. Pichugina, and B. L. Krukier, in: Proc. Int. Conf. Computational Science (ICCS), Vol. 18 (2013), pp. 2095–2100.

  13. Z. Buckova, M. Ehrhardt, and M. Gunther, Alternating direction explicit methods for convection diffusion equations, Preprint Bergische Universitat Wuppertal Fachbereich Mathematik und Naturwissenschaften BUWIMACM 16/20 (2015), pp. 309–325.

  14. J. Cazaux, Microsc. Microan., 10, No. 6, 670–680 (2004).

    Article  ADS  Google Scholar 

  15. M. Kotera, K. Yamaguchi, and H. Suga, Jpn. J. Appl. Phys., 38, No. 12, 7176–7179 (1999).

    Article  ADS  Google Scholar 

  16. B. Raftari, N. V. Budko, and C. Vuik, J. Appl. Phys., 118, 204101 (2015).

    Article  ADS  Google Scholar 

  17. D. S. Chezganov, D. K. Kuznetsov, and V. Ya. Shur, Ferroelectrics, 496, 70–78 (2016).

  18. A. Maslovskaya and A. Pavelchuk, Ferroelectrics, 476, 157–167 (2015).

    Article  Google Scholar 

  19. A. V. Pavelchuk and A. G. Maslovskaya, in: Proc. IOP Conf. Series: J. Phys.: Conf. Series, 012009 (6 pp.) (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pavelchuk.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 94–100, January, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavelchuk, A.V., Maslovskaya, A.G. Approach to Numerical Implementation of the Drift-Diffusion Model of Field Effects Induced by a Moving Source. Russ Phys J 63, 105–112 (2020). https://doi.org/10.1007/s11182-020-02008-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02008-4

Keywords

Navigation