Skip to main content
Log in

Critical Rotation Rate for Vortex Nucleation in Ultracold Rotating Boson Atoms Trapped in 2D Deep Optical Lattice at Finite Temperature

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, the critical rotation rate for vortex nucleation in ultracold rotating boson atoms in 2D deep optical lattices is calculated. We suggest a semiclassical approach to calculate the critical rotation frequency at finite temperature through extension of Stringari threshold formula. The critical rotation frequency is parametrized in terms of the thermodynamic potential. Depending on the semiclassical approximation, the calculated thermodynamic potential enabled us to investigate the finite size and interatomic interaction effects. The calculated results show that the critical rotation rate, as a function of stirring frequency, shows a peak, while the critical rotation rate as a function of the normalized temperature decreases monotonically with the increase in the temperature. The critical rotation rate depends on the interatomic interaction, atoms number and optical potential depth. The obtained results provide useful theoretical foundation for rotating condensate boson in optical lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Pethik, H. Smith, Bose–Einstein Condensation in Dilute gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  2. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford Science Publication, Oxford, 2003)

    MATH  Google Scholar 

  3. P. Lev, S. Pitaevskii, Bose–Einstein Condensation and Superfluidity (Oxford University Press (OUP), Stringari, 2016)

    MATH  Google Scholar 

  4. N.R. Cooper, Rapidly rotating atomic gases. Adv. Phys. 57, 539 (2008)

    Article  ADS  Google Scholar 

  5. A. Griffin, T. Nikuni, E. Zaremba, Bose Condensed Gases at Finite Temperature (Cambridge Univ Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  6. Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, J. Dalibard, Interference of an array of independent Bose–Einstein condensates. Phys. Rev. Lett. 93, 180403 (2004)

    Article  ADS  Google Scholar 

  7. S. Stock, Z. Hadzibabic, B. Battelier, M. Cheneau, J. Dalibard, Observation of phase defects in quasi-two-dimensional Bose–Einstein condensates. Phys. Rev. Lett. 95, 190403 (2005)

    Article  ADS  Google Scholar 

  8. J.-P. Martikainen, H.T.C. Stoof, Quantum fluctuations of a vortex in an optical lattice. Phys. Rev. Lett. 91, 240403 (2003)

    Article  ADS  Google Scholar 

  9. R.A. Williams, S. Al-Assam, C.J. Foot, Observation of vortex nucleation in a rotating two-dimensional lattice of Bose–Einstein condensates. Phys. Rev. Lett. 104, 050404 (2010)

    Article  ADS  Google Scholar 

  10. M. Guilleumas, M. Centelles, M. Barranco, R. Mayol, M. Pi, Critical frequency for vortex nucleation in Bose–Fermi mixtures in optical lattices. Phys. Rev A 72, 053602 (2005)

    Article  ADS  Google Scholar 

  11. A.C. Ji, X.C. Xie, W.M. Liu, Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys. Rev. Lett. 99, 183602 (2007)

    Article  ADS  Google Scholar 

  12. S. Tung, V. Schweikhard, E.A. Cornell, Observation of vortex pinning in Bose–Einstein condensates. Phys. Rev. Lett. 97, 240402 (2006)

    Article  ADS  Google Scholar 

  13. K. Kasamatsu, Uniformly frustrated bosonic Josephson-junction arrays. Phys. Rev. A 79, 021604 (2009)

    Article  ADS  Google Scholar 

  14. M. Polini, R. Fazio, A.H. MacDonald, M.P. Tosi, Realization of fully frustrated Josephson-junction arrays with cold atoms. Phys. Rev. Lett. 95, 010401 (2005)

    Article  ADS  Google Scholar 

  15. A.C. Ji, Q. Sun, X.C. Xie, W.M. Liu, Josephson effect for photons in two weakly linked microcavities. Phys. Rev. Lett. 102, 023602 (2009)

    Article  ADS  Google Scholar 

  16. C.J. Kennedy, W.C. Burton, W.C. Chung, W. Ketterle, Observation of Bose–Einstein condensation in a strong synthetic magnetic field. Nat. Phys. 11, 859 (2015)

    Article  Google Scholar 

  17. K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Vortices in a stir dotted red Bose–Einstein condensate. J. Mod. Opt. 47, 2715 (2000)

    Article  ADS  Google Scholar 

  18. J. Abo-Shaeer, C. Raman, J. Vogels, W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates. Science 292, 476 (2001)

    Article  ADS  Google Scholar 

  19. F. Dalfovo, S. Stringari, Bosons in anisotropic traps: ground state and vortices. Phys. Rev. A 53, 2477 (1996)

    Article  ADS  Google Scholar 

  20. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  21. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Clarendon Press, Oxford, 2003)

    MATH  Google Scholar 

  22. S. Giorgini, L. Pitaevskii, S. Stringari, Condensate fraction and critical temperature of a trapped interacting Bose gas. Phys. Rev. A 54, 4633 (1996)

    Article  ADS  Google Scholar 

  23. S. Giorgini, L. Pitaevskii, S. Stringari, Thermodynamics of a trapped Bose–Condensed gas. J. Low Temp. Phys., 109, 309 (1997)

    Article  ADS  Google Scholar 

  24. P. Rosenbusch, V. Bretin, J. Dalibard, Dynamics of a single vortex line in a Bose–Einstein condensate. Phys. Rev. Lett. 89, 200403 (2002)

    Article  ADS  Google Scholar 

  25. V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Fast rotation of a Bose–Einstein condensate. Phys. Rev. Lett. 92, 050403 (2004)

    Article  ADS  Google Scholar 

  26. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  27. F. Dalfovo, S. Giorgini, M. Guilleumas, L. Pitaevskii, S. Stringari, Collective and single particle excitations of a trapped Bose gas. Phys. Rev. A 56, 3840 (1997)

    Article  ADS  Google Scholar 

  28. A.C. Ji, W.M. Liu, J.L. Song, F. Zhou, Dynamical creation of fractionalized vortices and vortex lattices. Phys. Rev. Lett. 101, 010402 (2008)

    Article  ADS  Google Scholar 

  29. Z.X. Liang, Z.D. Zhang, W.M. Liu, Dynamics of a bright soliton in Bose–Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. Phys. Rev. Lett. 94, 050402 (2005)

    Article  ADS  Google Scholar 

  30. N.N. Bogoliubov, J. Phys. (Moscow) 11, 23 (1947)

    Google Scholar 

  31. A.L. Fetter, Ann. Phys. (N. Y.) 70, 67 (1972)

  32. V. N. Popov, in Functional Integrals and Collective Modes (Cambridge University Press, New York, 1987), Chap. 6

  33. A. Griffin, Phys. Rev. B 53, 9341 (1996)

    Article  ADS  Google Scholar 

  34. D.A.W. Hutchinson et al., J. Phys. B At. Mol. Opt. Phys. 33, 3825 (2000)

    Article  ADS  Google Scholar 

  35. S. Stringari, Phase diagram of quantized vortices in a trapped Bose–Einstein condensed gas. Phys. Rev. Lett. 82, 4371 (1999)

    Article  ADS  Google Scholar 

  36. K. Kirsten, D.J. Toms, Density of states for Bose–Einstein condensation in harmonic oscillator potentials. Phys. Lett. A 222, 148 (1996)

    Article  ADS  Google Scholar 

  37. K. Kirsten, D.J. Toms, Bose–Einstein condensation of atomic gases in a general harmonic-oscillator confining potential trap. Phys. Rev. A 54, 4188 (1996)

    Article  ADS  Google Scholar 

  38. K. Kirsten, D.J. Toms, Bose–Einstein condensation under external conditions. Phys. Lett. A 243, 137 (1998)

    Article  ADS  Google Scholar 

  39. K. Kirsten, D.J. Toms, Bose–Einstein condensation in arbitrarily shaped cavities. Phys. Rev. E 59, 158 (1999)

    Article  ADS  Google Scholar 

  40. R.K. Pathria, Statistical Mechanics (Pergammon, London, 1972)

    MATH  Google Scholar 

  41. N.J. Van Druten, W. Ketterle, Two-step condensation of the ideal Bose gas in highly anisotropic traps. Phys. Rev. Lett. 79, 549 (1997)

    Article  ADS  Google Scholar 

  42. G. Su, L. Chen, J. Chen, Effects of a finite number of particles on the thermodynamic properties of a noninteracting trapped Fermi gas. Phys. Lett. A 326, 252 (2004)

    Article  ADS  MATH  Google Scholar 

  43. S. Grossmann, M. Holthaus, Bose–Einstein condensation of finite number of confined particles. Phys. Lett. A 208, 188 (1995)

    Article  ADS  Google Scholar 

  44. A.S. Hassan, S.S.M. Soliman, Temperature dependence of the in situ widths of a rotating condensate in one dimensional optical potential. Physica B 459, 110 (2015)

    Article  ADS  Google Scholar 

  45. A.S. Hassan, A.M. El-Badrya, A.A. Mahmouda, H.A. Abdel-Ganyb, A. Mohammedein, A.M. Abdallahd, Effect of the weak interaction on the in situ radii of condensate boson atoms in one or two-dimensional deep optical lattices. Phys. Lett. A 383, 3063 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  46. A.S. Hassan, A.M. El-Badry, S.S.M. Soliman, Semiclassical Hartree–Fock theory of a rotating Bose–Einstein condensation. Eur. Phys. J. D 71, 7 (2017)

    Article  ADS  Google Scholar 

  47. N. Tammuz, Thermodynamics of ultracold \(39^{K}\) atomic Bose gases with tuneable interactions (Ph.D. Thesis, Cavendish Laboratory, University of Cambridge, UK, 2011)

  48. R. Campbell, Thermodynamic Properties of a Bose Gas with Tuneable Interactions (Cavendish Laboratory, University of Cambridge, Cambridge, 2011). (Ph.D. thesis

    Google Scholar 

  49. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Cold Bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  50. A.L. Fetter, Rotating vortex lattice in a Bose–Einstein condensate trapped in combined quadratic and quartic radial potentials. Phys. Rev. A 64, 063608 (2001)

    Article  ADS  Google Scholar 

  51. A.L. Fetter, Vortices in rotating trapped dilute Bose–Einstein condensates. Physica C 404, 158 (2004)

    Article  ADS  Google Scholar 

  52. A.L. Fetter, Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  53. Y. Xu, C. Wang, X. Wang, H. Fan, Generalized Hellmann–Feynman theorem for ensemble average expressed in the formalism of pure state expectation. Int. J. Theor. Phys. 51, 1062 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Di Ventra, S.T. Pantelides, Hellmann–Feynman theorem and the definition of forces in quantum time-dependent and transport problems. Phy. Rev. B 15, 16207 (2000)

    Article  Google Scholar 

  55. J.G. Esteve, F. Falceto, C.G. Canal, Generalization of the Hellmann–Feynman theorem. Phys. Lett. A 374, 819 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. P.B. Blakie, A. Bezett, P.F. Buonsante, Degenerate Fermi gas in a combined harmonic-lattice potential. Phys. Rev. A 75, 063609 (2007)

    Article  ADS  Google Scholar 

  57. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  58. S. Giorgini, L.P. Pitaevskii, S. Stringari, Scaling and thermodynamics of a trapped Bose-condensed gas. Phys. Rev. Lett. 78, 3987 (1997)

    Article  ADS  Google Scholar 

  59. S. Sinha, Quantum corrections to the thermodynamic potential of trapped bosons. Phys. Rev. A 58, 3159 (1998)

    Article  ADS  Google Scholar 

  60. H. Haugerud, T. Haugset, F. Ravndal, A more accurate analysis of Bose–Einstein condensation in harmonic traps. Phys. Lett. A 225, 18 (1997)

    Article  ADS  Google Scholar 

  61. R. Donnelly, Quantized vortices in Helium II (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed S. Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.S., Elbadry, A.M., Mahmoud, A.A. et al. Critical Rotation Rate for Vortex Nucleation in Ultracold Rotating Boson Atoms Trapped in 2D Deep Optical Lattice at Finite Temperature. J Low Temp Phys 200, 102–117 (2020). https://doi.org/10.1007/s10909-020-02467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02467-6

Keywords

Navigation