Skip to main content
Log in

Optical Radiation Trapping by Current in Gyrotropic Liquid Metacrystals

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that direct electric current passing through a suspension of gyrotropic nanoparticles with residual magnetization (gyrotropic liquid metacrystal) forms a unidirectional waveguide for optical radiation so that trapped light can propagate only in the direction opposite to the direction of current. The localization of electromagnetic radiation is associated with the emergence of nonuniform gyrotropy of the medium as a result of reorientation of magnetic nanoparticles in the nonuniform magnetic field of the current. By way of examples, we consider the trapping of the radiation by a plane current sheet and by a cylindrical current-carrying filament. The dispersion equations of trapped modes are derived and analyzed. The analogy with topologically protected edge photon states is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. M. Menon, L. I. Deych, and A. A. Lisyansky, Nat. Photon. 4, 345 (2010).

    Article  ADS  Google Scholar 

  2. D. A. B. Miller, Nat. Photon. 4, 3 (2010).

    Article  ADS  Google Scholar 

  3. A. Alu and N. Engheta, Nat. Photon. 2, 307 (2008).

    Article  Google Scholar 

  4. L. Novotny, Nature (London, U.K.) 455, 887 (2008).

    Article  ADS  Google Scholar 

  5. S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, APL Photon. 1, 030801 (2016).

  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, Nat. Mater. 7, 442 (2008).

    Article  ADS  Google Scholar 

  7. Y. F. C. Chau, J.-Y. Syu, C.-T. Chao, H.-P. Chiang, and C. M. Lim, J. Phys. D: Appl. Phys. 50, 045105 (2017).

    Article  ADS  Google Scholar 

  8. D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2003).

    Article  ADS  Google Scholar 

  9. X. Meng, A. V. Kidishev, K. Fujita, K. Tanaka, and V. M. Shalaev, Nano Lett. 13, 4106 (2013).

    Article  ADS  Google Scholar 

  10. S. Bang, J. Kim, G. Yoon, T. Tanaka, and J. Rho, Micromachines 9, 560 (2018).

    Article  Google Scholar 

  11. D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, N. Bonod, A. V. Zayats, W. Dickson, and D. Gerard, J. Opt. Soc. Am. B 34, 691 (2017).

    Article  ADS  Google Scholar 

  12. S. V. Li, D. G. Baranov, A. E. Krasnok, and P. A. Belov, Appl. Phys. Lett. 107, 171101 (2015).

    Article  ADS  Google Scholar 

  13. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, Science (Washington, DC, U. S.) 354, aag2472 (2016).

    Article  Google Scholar 

  14. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photon. 7, 958 (2013).

    Article  ADS  Google Scholar 

  15. O. Takayama and A. V. Lavrinenko, J. Opt. Soc. Am. B 36, F38 (2019).

    Article  Google Scholar 

  16. A. A. Zharov, A. A. Zharov, Jr., and N. A. Zharova, J. Opt. Soc. Am. B 31, 559 (2014).

    Article  ADS  Google Scholar 

  17. A. A. Zharov, A. A. Zharov, Jr., and N. A. Zharova, Phys. Rev. E 90, 023207 (2014).

    Article  ADS  Google Scholar 

  18. N. A. Zharova, A. A. Zharov, and A. A. Zharov, Jr., J. Opt. Soc. Am. B 33, 594 (2016).

    Article  ADS  Google Scholar 

  19. A. A. Zharov, Jr., N. A. Zharova, and A. A. Zharov, J. Opt. Soc. Am. B 34, 546 (2017).

    Article  ADS  Google Scholar 

  20. A. A. Zharov, A. A. Zharov, Jr., and N. A. Zharova, Phys. Rev. A 98, 013802 (2018).

    Article  ADS  Google Scholar 

  21. M. Liu, K. Fan, W. Padilla, X. Zhang, and I. V. Shadrivov, Adv. Mater. 28, 1553 (2016).

    Article  Google Scholar 

  22. Y. A. Urzhumov, G. Shvets, J. A. Fan, F. Capasso, D. Brandl, and P. Nordlander, Opt. Express 15, 14129 (2007).

    Article  ADS  Google Scholar 

  23. M. Fruhnert, S. Muhlig, F. Lederer, and C. Rockstuhl, Phys. Rev. B 89, 075408 (2014).

    Article  ADS  Google Scholar 

  24. H. J. Zeiger and G. W. Pratt, Magnetic Interactionin Solids (Oxford Univ. Press, Oxford, 1973).

    Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Pergamon, New York, 1977).

    MATH  Google Scholar 

  26. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, Phys. Rev. B 43, 6423 (1991).

    Article  ADS  Google Scholar 

  27. E. Du Tremolet de Lacheisserie, D. Gignoux, and M. Schlenker, Magnetism: Fundamentals (Springer, New York, 2005).

    Book  Google Scholar 

  28. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  29. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 17-02-00281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Zharova.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharov, A.A., Zharova, N.A. & Zharov, A.A. Optical Radiation Trapping by Current in Gyrotropic Liquid Metacrystals. J. Exp. Theor. Phys. 130, 499–505 (2020). https://doi.org/10.1134/S1063776120030188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120030188

Navigation