Skip to main content
Log in

Dissipative Instability of Shock Waves

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new condition is obtained for the linear instability of a plane front of an intense shock wave in an arbitrary medium, which is determined by the finiteness of the viscosity. It is shown that the shock front instability occurs due to dissipative instability of the flow behind the front, which is analogous to the flow instability in the boundary layer. It is found that in the low-viscosity limit, one-dimensional longitudinal perturbations increase much faster than two-dimensional (corrugation) perturbations. The results are compared with the available data of experimental observation and numerical simulation of instability of shock waves. The comparison shows a better agreement between the new absolute shock instability as compared to the condition of such instability in the classical D’yakov theory disregarding viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966).

  2. A. Rososhek, S. Efimov, V. Gurovich, A. Virozub, S. V. Tewari, and Ya. E. Krasik, Phys. Plasmas 26, 042302 (2019).

    Article  ADS  Google Scholar 

  3. A. Pirozhkov et al., Phys. Rev. Lett. 121, 074802 (2018).

    Article  Google Scholar 

  4. D. V. Bisikalo, A. G. Zhilkin, and E. P. Kurbatov, arXiv:1810.04454v1 [astro-ph.HE].

  5. H. Ahmed et al., Phys. Rev. Lett. 110, 205001 (2013).

    Article  ADS  Google Scholar 

  6. M. A. Garasev, A. I. Korytin, V. V. Kocharovsky, Yu. A. Mal’kov, A. A. Murzanev, A. A. Nechaev, and A. N. Stepanov, JETP Lett. 105, (2017).

  7. D. Badjin et al., Mon. Not. R. Astron. Soc. 459, 2188 (2016).

    Article  ADS  Google Scholar 

  8. S. P. D’yakov, Zh. Eksp. Teor. Fiz. 27, 288 (1954).

    Google Scholar 

  9. G. W. Swan and G. R. Fowles, Phys. Fluids 18, 28 (1975).

    Article  ADS  Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

  11. R. W. Griffits, R. J. Sandeman, and H. G. Hornung, J. Phys. D: Appl. Phys. 8, 1681 (1975).

    Article  Google Scholar 

  12. E. A. Kuznetsov, M. D. Spektor, and G. E. Fal’kovich, JETP Lett. 30, 303 (1979).

    ADS  Google Scholar 

  13. I. E. Tamm, Tr. FIAN SSSR 29, 239 (1965);

    Google Scholar 

  14. Collection of Scientific Articles (Nauka, Moscow, 1975), Vol. 1.

  15. M. D. Spektor, JETP Lett. 35, 221 (1982).

    ADS  Google Scholar 

  16. A. G. Bashkirov, Phys. Fluids A 3, 960 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  17. S. G. Chefranov and A. G. Chefranov, J. Exp. Theor. Phys. 122, 925 (2016).

    Article  ADS  Google Scholar 

  18. M. H. Rice and J. M. Walsh, J. Chem. Phys. 26, 824 (1957).

    Article  ADS  Google Scholar 

  19. A. C. Mitchell and W. J. Nellis, J. Chem. Phys. 76, 6273 (1982).

    Article  ADS  Google Scholar 

  20. K. Nagayama, Y. Mori, K. Shimada, and M. Nakahara, J. Appl. Phys. 91, 476 (2002).

    Article  ADS  Google Scholar 

  21. V. E. Fortov, Powerful Shock Waves on Earth and in Space (Fizmatlit, Moscow, 2019), Chap. 12 [in Russian].

    Google Scholar 

  22. A. V. Konyukhov, A. P. Likhachev, A. M. Oparin, S. I. Anisimov, and V. E. Fortov, J. Exp. Theor. Phys. 98, 811 (2004).

    Article  ADS  Google Scholar 

  23. A. V. Konyukhov, A. P. Likhachev, V. E. Fortov, S. I. Anisimov, K. V. Khishchenko, S. I. Anisimov, A. M. Oparin, and I. V. Lomonosov, JETP Lett. 90, 18 (2009).

    Article  ADS  Google Scholar 

  24. W. E. Deal, J. Appl. Phys. 28, 782 (1957).

    Article  ADS  Google Scholar 

  25. R. H. Christian and F. L. Yarger, J. Chem. Phys. 23, 2042 (1955).

    Article  ADS  Google Scholar 

  26. R. H. Christian and F. L. Yarger, J. Chem. Phys. 23, 2045 (1955).

    Article  ADS  Google Scholar 

  27. J. M. Richardson, A. B. Arons, and R. R. Halverson, J. Chem. Phys. 15, 785 (1947).

    Article  ADS  Google Scholar 

  28. S. Ridah, J. Appl. Phys. 64, 152 (1988).

    Article  ADS  Google Scholar 

  29. S. G. Chefranov, JETP Lett. 73, 274 (2001).

    Article  ADS  Google Scholar 

  30. S. G. Chefranov, Phys. Rev. Lett. 93, 254801 (2004).

    Article  ADS  Google Scholar 

  31. S. G. Chefranov and A. S. Chefranov, Phys. Scr. 94, 054001 (2019).

    Article  ADS  Google Scholar 

  32. J.-Ch. Robinet, J. Gressier, G. Casalis, and J.‑M. Moschetta, J. Fluid Mech. 417, 237 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  33. J. von Neumann and R. D. Richtmyer, J. Appl. Phys. 21, 232 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  34. A. A. Lubchich and M. I. Pudovkin, Phys. Fluids 16, 4489 (2004).

    Article  ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author expresses his gratitude to V.T. Gurovich and Ya.E. Krasik for their support and attention at all stages of preparation of this article, as well as to V.E. Fortov, A.S. Pirozhkov, A.M. Beloborodov, D. Bardin, M.A. Garasev, and E.P. Kurbatov for their interest in the results of this study and their discussion at the FNP2019 Conference.

Funding

This study was supported by the Russian Science Foundation (project no. 14-00806R) and the Israel Science Foundation (project no. 492/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Chefranov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chefranov, S.G. Dissipative Instability of Shock Waves. J. Exp. Theor. Phys. 130, 633–642 (2020). https://doi.org/10.1134/S1063776120030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120030036

Navigation