Skip to main content
Log in

Diffusion Properties of Oxygen in the γ-TiAl Alloy

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The oxygen absorption and migration energies in the γ-TiAl alloy are calculated using the projector augmented-wave method within the density functional theory. The phonon frequencies required for estimating the average jump rate are determined at initial and saddle oxygen positions. The temperature-dependent diffusion coefficient, the activation energy, and preexponential factor D0 are calculated along axes a and c using two models, which differ in oxygen interstitial positions, and two methods (statistical, Landman). The factors that determine the temperature-dependent diffusion coefficient in the Landman model are found. On the whole, the diffusion coefficients calculated within both methods are shown to agree satisfactorily; however, the Landman model can overestimate the contributions of low-barrier paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. Yamaguchi and Y. Umakoshi, Prog. Mater. Sci. 34, 1 (1990).

    Article  Google Scholar 

  2. Y. W. Kim, J. Mater. 46, 30 (1994).

    Google Scholar 

  3. M. Yamaguchi, H. Inui, and K. Ito, Acta Mater. 48, 307 (2000).

    Article  Google Scholar 

  4. E. A. Loria, Intermetallics 9, 997 (2001).

    Article  Google Scholar 

  5. S. Becker, A. Rahmel, M. Schorr, et al., Oxid. Met. 38, 425 (1992).

    Article  Google Scholar 

  6. M. Schmitz-Niederau and M. Schütze, Oxid. Met. 52, 225 (1999).

    Article  Google Scholar 

  7. S. Taniguchi, H. Juso, and T. Shibata, Oxid. Met. 49, 325 (1998).

    Article  Google Scholar 

  8. T. Narita, T. Izumi, M. Yatagai, et al., Intermetallics 8, 371 (2000).

    Article  Google Scholar 

  9. S. Taniguchi, Y. C. Zhu, K. Fujita, et al., Oxid. Met. 58, 375 (2002).

    Article  Google Scholar 

  10. P. Pérez, J. A. Jiménez, G. Frommeyer, et al., Mater. Sci. Eng. A 284, 138 (2000).

    Article  Google Scholar 

  11. K. Maki, M. Shioda, M. Sayashi, et al., Mater. Sci. Eng. A 153, 591 (1992).

    Article  Google Scholar 

  12. B. G. Kim, G. M. Kim, and C. J. Kim, Scr. Metall. Mater. 33, 1117 (1995).

    Article  Google Scholar 

  13. J. C. Woo, S. K. Varma, and R. N. Mahapatra, Metall. Mater. Trans. A 34, 2263 (2003).

    Article  Google Scholar 

  14. F. P. Ping, Q. M. Hu, A. V. Bakulin, et al., Intermetallics 68, 57 (2016).

    Article  Google Scholar 

  15. T. K. Roy, R. Balasubramaniam, and A. Ghosh, Metall. Mater. Trans. A 27A, 3993 (1996).

  16. S. Y. Liu, J. X. Shang, F. H. Wang, et al., Phys. Rev. B 79, 075419 (2009).

    Article  ADS  Google Scholar 

  17. H. Li, S. Wang, and H. Ye, J. Mater. Sci. Technol. 25, 569 (2009).

    Google Scholar 

  18. Y. Song, J. H. Dai, and R. Yang, Surf. Sci. 606, 852 (2012).

    Article  ADS  Google Scholar 

  19. A. V. Bakulin, S. E. Kulkova, Q. M. Hu, and R. Yang, J. Exp. Theor. Phys. 120, 257 (2015).

    Article  ADS  Google Scholar 

  20. S. E. Kulkova, A. V. Bakulin, Q. M. Hu, et al., Comput. Mater. Sci. 97, 55 (2015).

    Article  Google Scholar 

  21. A. M. Latyshev, A. V. Bakulin, S. E. Kulkova, Q. M. Hu, and R. Yang, J. Exp. Theor. Phys. 123, 991 (2016).

    Article  ADS  Google Scholar 

  22. A. M. Latyshev, A. V. Bakulin, and S. E. Kul’kova, Phys. Solid State 59, 1852 (2017).

    Article  ADS  Google Scholar 

  23. Y. Koizumi, M. Kishimoto, Y. Minamino, et al., Philos. Mag. 88, 2991 (2008).

    Article  ADS  Google Scholar 

  24. A. V. Bakulin, A. M. Latyshev, and S. E. Kul’kova, J. Exp. Theor. Phys. 125, 138 (2017).

    Article  ADS  Google Scholar 

  25. C. Y. Zhao, X. Wang, and F. H. Wang, Adv. Mater. Res. 304, 148 (2011).

    Article  Google Scholar 

  26. Y. A. Bertin, J. Parisot, and J. L. Gacougnolle, J. Less Common Met. 69, 121 (1980).

    Article  Google Scholar 

  27. S. E. Kulkova, A. V. Bakulin, and S. S. Kulkov, Latv. J. Phys. Tech. Sci. 6, 20 (2018).

    Google Scholar 

  28. H. H. Wu and D. R. Trinkle, Phys. Rev. Lett. 107, 045504 (2011).

    Article  ADS  Google Scholar 

  29. H. Wu, Oxygen Diffusion through Titanium and Other HCP Metals (Univ. Illinois, Urbana, IL, 2013).

    Google Scholar 

  30. U. Landman and M. F. Shlesinger, Phys. Rev. B 19, 6207 (1979).

    Article  ADS  Google Scholar 

  31. U. Landman and M. F. Shlesinger, Phys. Rev. B 19, 6220 (1979).

    Article  ADS  Google Scholar 

  32. D. Connétable, Int. J. Hydrogen Energy 44, 12215 (2019).

    Article  Google Scholar 

  33. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  34. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  35. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).

    Article  ADS  Google Scholar 

  36. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  37. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  38. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  39. G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  Google Scholar 

  40. K. Tanaka, Philos. Mag. Lett. 73, 71 (1996).

    Article  ADS  Google Scholar 

  41. J. Braun and M. Ellner, Metall. Mater. Trans. A 32, 1037 (2001).

    Article  Google Scholar 

  42. Bilbao Crystallographic Server, Bilbao, Univ. of the Basque Country. http://www.cryst.ehu.es/cryst/get_wp.html. Accessed October 23, 2019.

  43. D. Connétable and M. David, J. Alloys Compd. 772, 280 (2019).

    Article  Google Scholar 

  44. K. Lejaeghere, G. Bihlmayer, T. Björkman, et al., Science (Washington, DC, U. S.) 351, aad3000 (2016).

    Article  Google Scholar 

  45. T. Heumann, Diffusion in Metallen: Grundlagen, Theorie, Vorgänge in Reinmetallen und Legierungen (Springer, Berlin, 1992).

    Book  Google Scholar 

  46. V. V. Kurbatkina, in Concise Encyclopedia of Self-Propagating High-Temperature Synthesis: History, Theory, Technology, and Products, Ed. by I. P. Borovinskaya, A. A. Gromov, E. A. Levashov, (Elsevier, Amsterdam, 2017), p. 392.

    Google Scholar 

  47. H. J. Seifert, A. Kussmaul, and F. Aldinger, J. Alloys Compd. 317318, 19 (2001).

  48. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, et al., Otkryt. Sist. 7, 36 (2012).

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research (project no. 18-03-00064_a), project no. III.23.2.8 of the Institute of Strength Physics and Materials Science, and the Competitiveness Improvement Program of Tomsk State University.

The numerical calculations were carried out on the SKIF-Cyberia supercomputer in Tomsk State University and the Lomonosov supercomputer in Moscow State University [48].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Bakulin or S. E. Kulkova.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulin, A.V., Kulkov, S.S. & Kulkova, S.E. Diffusion Properties of Oxygen in the γ-TiAl Alloy. J. Exp. Theor. Phys. 130, 579–590 (2020). https://doi.org/10.1134/S1063776120030115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120030115

Navigation