Skip to main content
Log in

Ultraviolet Photodissociation of Peptides: New Insight on the Mobile Proton Model

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we study the mechanism of peptide photodissociation by ultraviolet irradiation at 193 nm wavelength and discuss the role of ionization proton in this process. We found that substituting the ionization proton for the alkali metal cations (sodium) in the peptide ions results in significant changes of the photodissociation spectra. The experimental data obtained in this work revealed that the photodissociation process can be described using the mobile proton model introduced earlier for peptide collision dissociation. The results can be used in proteomics research for optimization of mass spectrometer’s parameters to increase the efficiency of peptide dissociation and in developing sequence-specific models for peptide fragmentation prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. Aebersold and M. Mann, Nature (London, U.K.) 537, 347 (2016).

    Article  ADS  Google Scholar 

  2. P. E. Geyer, N. A. Kulak, G. Pichler, et al., Cell Syst. 2, 185 (2016).

    Article  Google Scholar 

  3. L. C. Gillet, A. Leitner, and R. Aebersold, Ann. Rev. Anal. Chem. 9, 449 (2016).

    Article  Google Scholar 

  4. E. S. Baker, T. Liu, V. A. Petyuk, et al., Genome Med. 4 (63), 1 (2012).

    Article  Google Scholar 

  5. A. I. Nesvizhskii, O. Vitek, and R. Aebersold, Nat. Methods 4, 787 (2007).

    Article  Google Scholar 

  6. J. Seidler, N. Zinn, M. E. Boehm, et al., Proteomics 10, 634 (2010).

    Article  Google Scholar 

  7. J. K. Diedrich, A. F. M. Pinto, and J. R. Yates, J. Am. Soc. Mass Spectrom. 24, 1690 (2013).

    Article  ADS  Google Scholar 

  8. Y. Zhang, S. B. Ficarro, S. Li, et al., J. Am. Soc. Mass Spectrom. 20, 1425 (2009).

    Article  Google Scholar 

  9. A. S. C Silva, R. Bouwmeester, L. Martens, et al., Bioinformatics (2019).

  10. G. Espadas, E. Borras, C. Chiva, et al., Proteomics 17, 1 (2017).

    Article  Google Scholar 

  11. B. Paizs and S. Suhai, Mass Spectrom. Rev. 24, 508 (2005).

    Article  ADS  Google Scholar 

  12. L. Sleno and D. A. Volmer, J. Mass Spectrom. 39, 1091 (2004).

    Article  ADS  Google Scholar 

  13. J. V. Olsen, B. Macek, O. Lange, et al., Nat. Methods 4, 709 (2007).

    Article  Google Scholar 

  14. P. Roepstorff and J. Fohlman, Biol. Mass Spectrom. 11, 601 (1984).

    Article  Google Scholar 

  15. E. M. Marzluff and J. L. Beauchamp, Large Ions: Their Vaporization, Detection and Structural Analysis, Ed. by T. Baer, C. Y. Ng, and I. Powis (Wiley, New York, 1996).

    Google Scholar 

  16. V. H. Wysocki, G. Tsaprailis, L. L. Smith, et al., J. Mass Spectrom. 35, 1399 (2000).

    Article  ADS  Google Scholar 

  17. B. L. Schwartz and M. M. Bursey, Biol. Mass Spectrom. 21, 92 (1992).

    Article  Google Scholar 

  18. C. Gu, A. Somogyi, V. H. Wysocki, et al., Anal. Chim. Acta 397, 247 (1999).

    Article  Google Scholar 

  19. R. S. Johnson, D. Krylov, and K. A. Walsh, J. Mass Spectrom. 30, 386 (1995).

    Article  ADS  Google Scholar 

  20. B. Paizs, I. P. Csonka, G. Lendvay, et al., Rapid Commun. Mass Spectrom. 15, 637 (2001).

    Article  ADS  Google Scholar 

  21. M. P. Jedrychowski, E. L. Huttlin, W. Haas, et al., Mol. Cell. Proteomics 10, M111.009910 (2011).

  22. M. L. Nielsen, M. M. Savitski, and R. A. Zubarev, Mol. Cell. Proteomics 4, 835 (2005).

    Article  Google Scholar 

  23. J. A. Madsen, T. S. Kaoud, K. N. Dalby, et al., Proteomics 11, 1329 (2011).

    Article  Google Scholar 

  24. R. Parthasarathi, Y. He, J. P. Reilly, et al., J. Am. Chem. Soc. 132, 1606 (2010).

    Article  Google Scholar 

  25. T. Fellers, B. P. Early, P. M. Thomas, et al., J. Am. Chem. Soc. 135, 12646 (2014).

    Google Scholar 

  26. J. A. Madsen, D. R. Boutz, and J. S. Brodbelt, J. Proteome Res. 9, 4205 (2010).

    Article  Google Scholar 

  27. T. Ly and R. R. Julian, Angew. Chem. Int. Ed. 48, 7130 (2009).

    Article  Google Scholar 

  28. J. P. Reilly, Mass Spectrom. Rev. 28, 425 (2016).

    Article  ADS  Google Scholar 

  29. L. Zhang and J. P. Reilly, Anal. Chem. 81, 7829 (2009).

    Article  Google Scholar 

  30. E. M. Solovyeva, V. N. Kopysov, A. Y. Pereverzev, et al., Anal. Chem. 91, 6709 (2019).

    Google Scholar 

  31. K. L. Fort, A. Dyachenko, C. M. Potel, et al., Anal. Chem. 88, 2303 (2016).

    Article  Google Scholar 

  32. T. P. Cleland, C. J. Dehart, R. T. Fellers, et al., J. Proteome Res. 16, 2072 (2017).

    Article  Google Scholar 

  33. X. Dang and N. L. Young, Proteomics 14, 1128 (2014).

    Article  Google Scholar 

  34. S. M. Greer and J. S. Brodbelt, J. Proteome Res. 17, 11385 (2018).

    Google Scholar 

  35. M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic, New York, 1974).

    Google Scholar 

  36. R. R. Julian, J. Am. Soc. Mass Spectrom. 28, 1823 (2017).

    Article  ADS  Google Scholar 

  37. P. R. Stannard and W. M. Gelbart, J. Phys. Chem. 85, 3592 (1981).

    Article  Google Scholar 

  38. Y. Hu, B. Hadas, M. Davidovitz, et al., J. Phys. Chem. A 107, 6507 (2003).

    Article  Google Scholar 

  39. H. M. Rosenstock, M. B. Wallenstein, A. L. Wahrhaftig, et al., Proc. Natl. Acad. Sci. 38, 667 (1952).

    Article  ADS  Google Scholar 

  40. K. M. Choi, S. H. Yoon, M. Sun, et al., J. Am. Soc. Mass Spectrom. 17, 1643 (2006).

    Article  Google Scholar 

  41. J. H. Moon, S. H. Yoon, Y. J. Bae, et al., J. Am. Soc. Mass Spectrom. 21, 1151 (2010).

    Article  Google Scholar 

  42. J. H. Moon, S. H. Yoon, and M. S. Kim, Rapid Commun. Mass Spectrom. 19, 3248 (2005).

    Article  ADS  Google Scholar 

  43. W. Cui, M. S. Thompson, and J. P. Reilly, J. Am. Soc. Mass Spectrom. 16, 1384 (2005).

    Article  Google Scholar 

  44. J. Y. Oh, J. H. Moon, and M. S. Kim, J. Mass Spectrom. 40, 899 (2005).

    Article  ADS  Google Scholar 

  45. M. Yamashita and J. B. Fenn, J. Phys. Chem. 88, 4451 (1984).

    Article  Google Scholar 

  46. V. Kopysov, A. Makarov, and O. V. Boyarkin, Anal. Chem. 87, 4607 (2015).

    Article  Google Scholar 

  47. T. Lin, A. H. Payne, and G. L. Glish, J. Am. Soc. Mass Spectrom. 12, 497 (2001).

    Article  Google Scholar 

  48. W. Yong, S. Gronert, K. A. Fletcher, et al., Int. J. Mass Spectrom. 222, 117 (2003).

    Article  Google Scholar 

  49. S. M. Greer, D. D. Holden, R. Fellers, et al., J. Am. Soc. Mass Spectrom. 28, 1587 (2017).

    Article  ADS  Google Scholar 

  50. N. M. Emanuel und D. G. Knorre, Chemical Kinetics (Wiley, New York, 1973).

    Google Scholar 

  51. W. Stiller, Arrhenius Equation and Non-Equilibrium Kinetics (BSB B. G. Teubner, Leipzig, 1989).

    Google Scholar 

  52. G. H. Beaven and E. R. Holiday, Ultraviolet Absorption Spectra of Proteins and Amino Acids (Academic, New York, 1952), p. 319.

    Book  Google Scholar 

  53. A. P. Demchenko, Ultraviolet Spectroscopy of Proteins (Springer, Berlin, 1986).

    Book  Google Scholar 

  54. C. Bleiholder, S. Suhai, and B. Paizs, J. Am. Soc. Mass Spectrom. 17, 1275 (2006).

    Article  Google Scholar 

  55. G. Tsaprailis, H. Nair, A. Somogyi, et al., J. Am. Chem. Soc. 121, 5142 (1999).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Program for Basic Research of Russian State Academies of Sciences for 2013–2020 (no. 0068-2019-0011). A.Y.P. and O.V.B. thank Swiss National Science Foundation (grants 206021_164101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Solovyeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovyeva, E.M., Pereverzev, A.Y., Gorshkov, M.V. et al. Ultraviolet Photodissociation of Peptides: New Insight on the Mobile Proton Model. J. Exp. Theor. Phys. 130, 626–632 (2020). https://doi.org/10.1134/S1063776120030164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120030164

Navigation