Skip to main content
Log in

Superstrata

  • Editor’s Choice (Invited Review: State of the Field)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We give a survey of the present status of the microstate geometries called superstrata. Superstrata are smooth, horizonless solutions of six-dimensional supergravity that represent some of the microstates of the D1–D5–P black hole in string theory. They are the most general microstate geometries of that sort whose CFT dual states are identified. After reviewing relevant features of the dual CFT, we discuss the construction of superstratum solutions in supergravity, based on the linear structure of the BPS equations. We also review some of recent work on generalizations of superstrata and physical properties of superstrata. Although the number of superstrata constructed so far is not enough to account for the black-hole entropy, they give us valuable insights into the microscopic physics of black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For \(\mathcal{M}=\mathrm{K3}\), \(N_1\) includes the D1-brane charge induced on the worldvolume of the D5-branes by a curvature coupling [1]. Namely \(N_1=N_1^{\mathrm{explicit}}+N_1^{\mathrm{induced}}\), \(N_1^\mathrm{induced}=-N_5\).

  2. \(J=J^3_0\in {\mathbb {Z}}/2\) where \(J^3_0\) is a generator of \(SU(2)_L\in SO(4)\) coming from the rotational symmetry in the directions transverse to the D-branes.

  3. The CFT dual states of superstrata based on the five-dimensional multi-center solutions with two centers are known, while duals of multi-center solutions with more than two centers or those of their superstratum generalizations are not known.

  4. The string-theory configurations resulting from such multistage supertube transition should be called (general) superstrata, which in general contain dipole charges that do not allow a description in terms of smooth geometry. Superstrata that do allow a geometric description, like the ones constructed in [29], should properly be called geometric superstrata, although they are normally simply called superstrata.

  5. For reviews of the D1-D5 CFT, see e.g. [49, 50].

  6. For \(\mathcal{M}=T^4\), the low-energy dynamics of the D-brane bound state can be described by a supersymmetric sigma model with target space \({\mathbb {R}}^4\times T^4\times \mathrm{Sym}^{N_1 N_5}(T^4)\), where the \({\mathbb {R}}^4\) part describes the center-of-mass motion of the D-branes in the noncompact \({\mathbb {R}}^4\), the \(T^4\) part describes worldvolume Wilson lines along the internal \(T^4\), and the \(\mathrm{Sym}^{N_1 N_5}(T^4)\) part describes the moduli space of D1-branes as instantons inside the D5 worldvolume [51, 53]. Here we are focusing on the last part. For \(\mathcal{M}=\mathrm{K3}\), the target space is \({\mathbb {R}}^4\times \mathrm{Sym}^{N_1 N_5+1}(\mathrm{K3})\) [2, 51] where the \({\mathbb {R}}^4\) part describes the center-of-mass motion in the noncompact \({\mathbb {R}}^4\) and the \(\mathrm{Sym}^{N_1 N_5+1}(\mathrm{K3})\) part describes the instanton moduli space which we are focusing on.

  7. Except for the case with \(\alpha =-\) (\(\dot{\alpha }=-\)) and \(k=1\) for which 8 left-moving (right-moving) supercharges are preserved.

  8. For \(\mathcal{M}=\mathrm{K3}\), supersymmetry implies that the number of chiral primary states do not change [60]. For \(\mathcal{M}=T^4\), such supersymmetry argument is not enough for showing that the number stays constant, although we expect that it does, on physical grounds (single-particle supergravitons and their gas must exist everywhere in the moduli space).

  9. These states are not normalized.

  10. These fields have symmetry indices as \(X^{A{\dot{A}}}(z,{\overline{z}}),\Psi ^{\alpha {\dot{A}}}(z),{\tilde{\Psi }}^{\dot{\alpha }{\dot{A}}}({\overline{z}})\) and each has four components on each strand [49, 50].

  11. For recent progress, see [68, 69].

  12. For supersymmetric solutions that do not preserve this symmetry, see [45].

  13. There are also supersymmetric solutions with a timelike Killing vector, but they are not relevant for the microstates of the D1-D5-P black hole whose Killing spinor squares to a null Killing vector [70].

  14. The six-dimensional exterior derivative acting on \(u,v,x^m\), although nothing depends on u.

  15. For example, when one relates 6D and 5D solutions, other choices are more convenient; see [43].

  16. The \(A\ge 6\) components [5, 7] break the symmetry of \(\mathcal{M}\).

  17. The absolute value square of the Fourier coefficient is proportional to \(N^\psi _k\) with a non-trivial coefficient. For the precise map, see, e.g., [37].

  18. Generally, the large N scaling is \(b_I^{\mathsf {k}}\sim A^\psi _{k,m,n,f}N^{-1/2}\sim (N^{\psi }_{k,m,n,f}/N)^{1/2}\) [7, 61, 62].

  19. If one wants to consider some other background state \(\Psi _{\mathrm{bg}}\), then one needs to study the spectrum of linearized supergravity around the background geometry dual to \(\Psi _{\mathrm{bg}}\), in order to carry out the procedure of this section.

  20. Here we using the NS language, appropriate for the \(\mathrm{AdS}_3\times S^3\) background.

  21. This coiffuring for low-frequency source is more non-trivial than the high-frequency one. For low-frequency coiffuring, the term in \(Z_1\) to be turned on is proportional to \(\Delta _{k_1-k_2,m_1-m_2,n_1-n_2}\), whereas one naively expects terms proportional to \(\Delta _{k_1,m_1,n_1}\Delta _{k_2,m_2,n_2}= \Delta _{k_1+k_2,m_1+m_2,n_1+n_2}\), the second-layer source being quadratic in \(Z_I,\Theta _I\).

  22. The expression (4.24) can be regarded as a sort of triple hypergeometric function.

  23. Their solutions include generalization to excitations around the orbifold \((\mathrm{AdS}_3\times S^3)/{\mathbb {Z}}_p\) with \(p\ge 1\), but here we are setting \(p=1\).

  24. Having a single mode turned on in the bulk means that, on the boundary, infinitely many modes are turned on. Namely, the corresponding CFT state has \((J^+_{-1})^k{|{++}\rangle }_{k+1}\), \((J^+_{-1})^k{|{--}\rangle }_{k-1}\) and \((J^+_{-1})^k{|{00}\rangle }_k\) turned on not just for one value of k but for all integer multiples of k.

  25. They also present orbifolded superstrata of “Style 1” mentioned in section 4.3.8.

  26. It was argued that these D0-branes puff out into M2-branes whose Landau level degeneracy accounts for the entropy of the MSW black hole [93, 95]. These M2-branes are supposed to wrap a non-trivial \(S^2\) in the geometry and are sometimes dubbed supereggs. However, it was shown that such M2-branes will violate charge conservation [96] and/or break the supersymmetry [97] preserved by the MSW black hole. Therefore, these superegg M2-branes and their Landau levels cannot be the precise description of the microstates.

  27. This correlation function, being really a four-point function, is not protected.

  28. The spectrum in the (1, 0, n) geometry was studied in [83] before.

References

  1. Bershadsky, M., Vafa, C., Sadov, V.: D-branes and topological field theories. Nucl. Phys. B 463, 420 (1996). https://doi.org/10.1016/0550-3213(96)00026-0. [arXiv:hep-th/9511222]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996). https://doi.org/10.1016/0370-2693(96)00345-0. [arXiv:hep-th/9601029]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Breckenridge, J.C., Myers, R.C., Peet, A.W., Vafa, C.: D-branes and spinning black holes. Phys. Lett. B 391, 93 (1997). https://doi.org/10.1016/S0370-2693(96)01460-8. [arXiv:hep-th/9602065]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Lunin, O., Mathur, S.D.: AdS / CFT duality and the black hole information paradox. Nucl. Phys. B 623, 342 (2002). https://doi.org/10.1016/S0550-3213(01)00620-4. [arXiv:hep-th/0109154]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Lunin, O., Maldacena, J.M., Maoz, L.: Gravity solutions for the D1-D5 system with angular momentum. arXiv:hep-th/0212210

  6. Taylor, M.: General 2 charge geometries. JHEP 0603, 009 (2006). https://doi.org/10.1088/1126-6708/2006/03/009. [arXiv:hep-th/0507223]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Kanitscheider, I., Skenderis, K., Taylor, M.: Fuzzballs with internal excitations. JHEP 0706, 056 (2007). https://doi.org/10.1088/1126-6708/2007/06/056. [arXiv:0704.0690 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  8. Rychkov, V.S.: D1-D5 black hole microstate counting from supergravity. JHEP 0601, 063 (2006). https://doi.org/10.1088/1126-6708/2006/01/063. [arXiv:hep-th/0512053]

    Article  ADS  MathSciNet  Google Scholar 

  9. Krishnan, C., Raju, A.: A note on D1–D5 entropy and geometric quantization. JHEP 1506, 054 (2015). https://doi.org/10.1007/JHEP06(2015)054. [arXiv:1504.04330 [hep-th]]

  10. Bena, I., Wang, C.W., Warner, N.P.: Mergers and typical black hole microstates. JHEP 0611, 042 (2006). https://doi.org/10.1088/1126-6708/2006/11/042. [arXiv:hep-th/0608217]

    Article  ADS  MathSciNet  Google Scholar 

  11. Bena, I., Bobev, N., Giusto, S., Ruef, C., Warner, N.P.: An infinite-dimensional family of black-hole microstate geometries. JHEP 1103, 022 (2011) Erratum: [JHEP 1104, 059 (2011)] https://doi.org/10.1007/JHEP03(2011)022,10.1007/JHEP04(2011)059 [arXiv:1006.3497 [hep-th]]

  12. Heidmann, P.: Four-center bubbled BPS solutions with a Gibbons–Hawking base. JHEP 1710, 009 (2017). https://doi.org/10.1007/JHEP10(2017)009. [arXiv:1703.10095 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bena, I., Heidmann, P., Ramirez, P.F.: A systematic construction of microstate geometries with low angular momentum. JHEP 1710, 217 (2017). https://doi.org/10.1007/JHEP10(2017)217. [arXiv:1709.02812 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bena, I., Warner, N.P.: Bubbling supertubes and foaming black holes. Phys. Rev. D 74, 066001 (2006). https://doi.org/10.1103/PhysRevD.74.066001. [arXiv:hep-th/0505166]

    Article  ADS  MathSciNet  Google Scholar 

  15. Berglund, P., Gimon, E.G., Levi, T.S.: Supergravity microstates for BPS black holes and black rings. JHEP 0606, 007 (2006). https://doi.org/10.1088/1126-6708/2006/06/007. [arXiv:hep-th/0505167]

    Article  ADS  MathSciNet  Google Scholar 

  16. Mathur, S.D., Saxena, A., Srivastava, Y.K.: Constructing ‘hair’ for the three charge hole. Nucl. Phys. B 680, 415 (2004). https://doi.org/10.1016/j.nuclphysb.2003.12.022. [arXiv:hep-th/0311092]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lunin, O.: Adding momentum to D-1 - D-5 system. JHEP 0404, 054 (2004). https://doi.org/10.1088/1126-6708/2004/04/054. [arXiv:hep-th/0404006]

    Article  ADS  MathSciNet  Google Scholar 

  18. Giusto, S., Mathur, S.D., Saxena, A.: Dual geometries for a set of 3-charge microstates. Nucl. Phys. B 701, 357 (2004). https://doi.org/10.1016/j.nuclphysb.2004.09.001. [arXiv:hep-th/0405017]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Giusto, S., Mathur, S.D., Saxena, A.: 3-charge geometries and their CFT duals. Nucl. Phys. B 710, 425 (2005). https://doi.org/10.1016/j.nuclphysb.2005.01.009. [arXiv:hep-th/0406103]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Giusto, S., Mathur, S.D., Srivastava, Y.K.: A Microstate for the 3-charge black ring. Nucl. Phys. B 763, 60 (2007). https://doi.org/10.1016/j.nuclphysb.2006.11.009. [arXiv:hep-th/0601193]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ford, J., Giusto, S., Saxena, A.: A Class of BPS time-dependent 3-charge microstates from spectral flow. Nucl. Phys. B 790, 258 (2008). https://doi.org/10.1016/j.nuclphysb.2007.09.008. [arXiv:hep-th/0612227]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Mathur, S.D., Turton, D.: Microstates at the boundary of AdS. JHEP 1205, 014 (2012). https://doi.org/10.1007/JHEP05(2012)014. [arXiv:1112.6413 [hep-th]]

    Article  ADS  Google Scholar 

  23. Mathur, S.D., Turton, D.: Momentum-carrying waves on D1–D5 microstate geometries. Nucl. Phys. B 862, 764 (2012). https://doi.org/10.1016/j.nuclphysb.2012.05.014. [arXiv:1202.6421 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Lunin, O., Mathur, S.D., Turton, D.: Adding momentum to supersymmetric geometries. Nucl. Phys. B 868, 383 (2013). https://doi.org/10.1016/j.nuclphysb.2012.11.017. [arXiv:1208.1770 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Giusto, S., Russo, R.: Superdescendants of the D1D5 CFT and their dual 3-charge geometries. JHEP 1403, 007 (2014). https://doi.org/10.1007/JHEP03(2014)007. [arXiv:1311.5536 [hep-th]]

    Article  ADS  Google Scholar 

  26. Giusto, S., Lunin, O., Mathur, S.D., Turton, D.: D1-D5-P microstates at the cap. JHEP 1302, 050 (2013). https://doi.org/10.1007/JHEP02(2013)050. [arXiv:1211.0306 [hep-th]]

    Article  ADS  Google Scholar 

  27. Bena, I., El-Showk, S., Vercnocke, B.: Black Holes in String Theory. Springer Proc. Phys. 144, 59 (2013). https://doi.org/10.1007/978-3-319-00215-6_2

    Article  Google Scholar 

  28. Warner, N.P.: Lectures on microstate geometries. arXiv:1912.13108 [hep-th]

  29. Bena, I., Giusto, S., Russo, R., Shigemori, M., Warner, N.P.: Habemus superstratum! A constructive proof of the existence of superstrata. JHEP 1505, 110 (2015). https://doi.org/10.1007/JHEP05(2015)110. [arXiv:1503.01463 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Bena, I., de Boer, J., Shigemori, M., Warner, N.P.: Double, double supertube bubble. JHEP 1110, 116 (2011). https://doi.org/10.1007/JHEP10(2011)116. [arXiv:1107.2650 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Mateos, D., Townsend, P.K.: Supertubes. Phys. Rev. Lett. 87, 011602 (2001). https://doi.org/10.1103/PhysRevLett.87.011602. [arXiv:hep-th/0103030]

    Article  ADS  MathSciNet  Google Scholar 

  32. de Boer, J., Shigemori, M.: Exotic branes and non-geometric backgrounds. Phys. Rev. Lett. 104, 251603 (2010). https://doi.org/10.1103/PhysRevLett.104.251603. [arXiv:1004.2521 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  33. de Boer, J., Shigemori, M.: Exotic branes in string theory. Phys. Rept. 532, 65 (2013). https://doi.org/10.1016/j.physrep.2013.07.003. [arXiv:1209.6056 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Gutowski, J.B., Martelli, D., Reall, H.S.: All supersymmetric solutions of minimal supergravity in six-dimensions. Class. Quant. Grav. 20, 5049 (2003). https://doi.org/10.1088/0264-9381/20/23/008. [arXiv:hep-th/0306235]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Cariglia, M., Mac Conamhna, O.A.P.: The general form of supersymmetric solutions of N=(1,0) U(1) and SU(2) gauged supergravities in six-dimensions. Class. Quant. Grav. 21, 3171 (2004). https://doi.org/10.1088/0264-9381/21/13/006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Bena, I., Giusto, S., Shigemori, M., Warner, N.P.: Supersymmetric solutions in six dimensions: a linear structure. JHEP 1203, 084 (2012). https://doi.org/10.1007/JHEP03(2012)084. [arXiv:1110.2781 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Giusto, S., Rawash, S., Turton, D.: \(\text{ Ads }_{{3}}\) holography at dimension two. JHEP 1907, 171 (2019). https://doi.org/10.1007/JHEP07(2019)171. [arXiv:1904.12880 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  38. Giusto, S., Russo, R., Turton, D.: New D1-D5-P geometries from string amplitudes. JHEP 1111, 062 (2011). https://doi.org/10.1007/JHEP11(2011)062. [arXiv:1108.6331 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Giusto, S., Russo, R.: Perturbative superstrata. Nucl. Phys. B 869, 164 (2013). https://doi.org/10.1016/j.nuclphysb.2012.12.012. [arXiv:1211.1957 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Giusto, S., Martucci, L., Petrini, M., Russo, R.: 6D microstate geometries from 10D structures. Nucl. Phys. B 876, 509 (2013). https://doi.org/10.1016/j.nuclphysb.2013.08.018. [arXiv:1306.1745 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Bena, I., Martinec, E., Turton, D., Warner, N.P.: Momentum fractionation on superstrata. JHEP 1605, 064 (2016). https://doi.org/10.1007/JHEP05(2016)064. [arXiv:1601.05805 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Bena, I., Giusto, S., Martinec, E.J., Russo, R., Shigemori, M., Turton, D., Warner, N.P.: Smooth horizonless geometries deep inside the black-hole regime. Phys. Rev. Lett. 117(20), 201601 (2016). https://doi.org/10.1103/PhysRevLett.117.201601

    Article  ADS  MATH  Google Scholar 

  43. Bena, I., Martinec, E., Turton, D., Warner, N.P.: M-theory superstrata and the MSW string. JHEP 1706, 137 (2017). https://doi.org/10.1007/JHEP06(2017)137. [arXiv:1703.10171 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Bena, I., Giusto, S., Martinec, E.J., Russo, R., Shigemori, M., Turton, D., Warner, N.P.: Asymptotically-flat supergravity solutions deep inside the black-hole regime. JHEP 1802, 014 (2018). https://doi.org/10.1007/JHEP02(2018)014. [arXiv:1711.10474 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Bakhshaei, E., Bombini, A.: Three-charge superstrata with internal excitations. Class. Quant. Grav. 36(5), 055001 (2019). https://doi.org/10.1088/1361-6382/ab01bc

    Article  ADS  MathSciNet  Google Scholar 

  46. Ceplak, N., Russo, R., Shigemori, M.: Supercharging superstrata. JHEP 1903, 095 (2019). https://doi.org/10.1007/JHEP03(2019)095. [arXiv:1812.08761 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Heidmann, P., Warner, N.P.: Superstratum symbiosis. JHEP 1909, 059 (2019). https://doi.org/10.1007/JHEP09(2019)059. [arXiv:1903.07631 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Giusto, S., Moscato, E., Russo, R.: \(\text{ AdS }_{{3}}\) holography for 1/4 and 1/8 BPS geometries. JHEP 1511, 004 (2015). https://doi.org/10.1007/JHEP11(2015)004. [arXiv:1507.00945 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  49. David, J.R., Mandal, G., Wadia, S.R.: Microscopic formulation of black holes in string theory. Phys. Rept. 369, 549 (2002). https://doi.org/10.1016/S0370-1573(02)00271-5. [arXiv:hep-th/0203048]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Avery, S.G.: Using the D1D5 CFT to understand black holes. arXiv:1012.0072 [hep-th]

  51. Vafa, C.: Instantons on D-branes. Nucl. Phys. B 463, 435 (1996). https://doi.org/10.1016/0550-3213(96)00075-2. [arXiv:hep-th/9512078]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Witten, E.: On the conformal field theory of the Higgs branch. JHEP 9707, 003 (1997). https://doi.org/10.1088/1126-6708/1997/07/003. [arXiv:hep-th/9707093]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Maldacena, J.M., Moore, G.W., Strominger, A.: Counting BPS black holes in toroidal type II string theory. arXiv:hep-th/9903163

  54. Maldacena, J.M., Strominger, A.: \(AdS_3\) black holes and a stringy exclusion principle. JHEP 9812, 005 (1998). https://doi.org/10.1088/1126-6708/1998/12/005. [arXiv:hep-th/9804085]

    Article  ADS  MATH  Google Scholar 

  55. Vafa, C., Witten, E.: A strong coupling test of S-duality. Nucl. Phys. B 431, 3 (1994). https://doi.org/10.1016/0550-3213(94)90097-3. [arXiv:hep-th/9408074]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Deger, S., Kaya, A., Sezgin, E., Sundell, P.: Spectrum of \(D=6, N=4b\) supergravity on \(\rm AdS_3 \times S^3\). Nucl. Phys. B 536, 110 (1998). https://doi.org/10.1016/S0550-3213(98)00555-0. [arXiv:hep-th/9804166]

    Article  ADS  MATH  Google Scholar 

  57. Larsen, F.: The Perturbation spectrum of black holes in N=8 supergravity. Nucl. Phys. B 536, 258 (1998). https://doi.org/10.1016/S0550-3213(98)00564-1. [arXiv:hep-th/9805208]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. de Boer, J.: Six-dimensional supergravity on \(S^3 \times {\rm AdS}_3\) and 2d conformal field theory. Nucl. Phys. B 548, 139 (1999). https://doi.org/10.1016/S0550-3213(99)00160-1. [arXiv:hep-th/9806104]

    Article  ADS  Google Scholar 

  59. de Boer, J., Papadodimas, K., Verlinde, E.: Black hole berry phase. Phys. Rev. Lett. 103, 131301 (2009). https://doi.org/10.1103/PhysRevLett.103.131301. [arXiv:0809.5062 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  60. Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rept. 323, 183 (2000). https://doi.org/10.1016/S0370-1573(99)00083-6. [arXiv:hep-th/9905111]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Skenderis, K., Taylor, M.: Fuzzball solutions and D1–D5 microstates. Phys. Rev. Lett. 98, 071601 (2007). https://doi.org/10.1103/PhysRevLett.98.071601. [arXiv:hep-th/0609154]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Kanitscheider, I., Skenderis, K., Taylor, M.: Holographic anatomy of fuzzballs. JHEP 0704, 023 (2007). https://doi.org/10.1088/1126-6708/2007/04/023. [arXiv:hep-th/0611171]

    Article  ADS  MathSciNet  Google Scholar 

  63. Shigemori, M.: Counting superstrata. JHEP 1910, 017 (2019). https://doi.org/10.1007/JHEP10(2019)017. [arXiv:1907.03878 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  64. Walton, M.A.: The heterotic string on the simplest Calabi-yau manifold and its orbifold limits. Phys. Rev. D 37, 377 (1988). https://doi.org/10.1103/PhysRevD.37.377

    Article  ADS  MathSciNet  Google Scholar 

  65. Bena, I., Shigemori, M., Warner, N.P.: Black-hole entropy from supergravity superstrata states. JHEP 1410, 140 (2014). https://doi.org/10.1007/JHEP10(2014)140. [arXiv:1406.4506 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Dijkgraaf, R., Moore, G.W., Verlinde, E.P., Verlinde, H.L.: Elliptic genera of symmetric products and second quantized strings. Commun. Math. Phys. 185, 197 (1997). https://doi.org/10.1007/s002200050087. [arXiv:hep-th/9608096]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. de Boer, J.: Large N elliptic genus and AdS / CFT correspondence. JHEP 9905, 017 (1999). https://doi.org/10.1088/1126-6708/1999/05/017. [arXiv:hep-th/9812240]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Hampton, S., Mathur, S.D., Zadeh, I.G.: Lifting of D1-D5-P states. JHEP 1901, 075 (2019). https://doi.org/10.1007/JHEP01(2019)075. [arXiv:1804.10097 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Guo, B., Mathur, S.D.: Lifting of level-1 states in the D1D5 CFT. JHEP 2020, 28 (2020). https://doi.org/10.1007/JHEP03(2020)028

    Article  Google Scholar 

  70. Bossard, G., Lüst, S.: Microstate geometries at a generic point in moduli space. Gen. Relativ. Gravit. 51(9), 112 (2019). https://doi.org/10.1007/s10714-019-2584-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Tyukov, A., Walker, R., Warner, N.P.: The structure of BPS equations for ambi-polar microstate geometries. Class. Quant. Grav. 36(1), 015021 (2019). https://doi.org/10.1088/1361-6382/aaf133

    Article  ADS  MathSciNet  Google Scholar 

  72. Walker, R.: D1-D5-P superstrata in 5 and 6 dimensions: separable wave equations and prepotentials. JHEP 1909, 117 (2019). https://doi.org/10.1007/JHEP09(2019)117. [arXiv:1906.04200 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Giusto, S., Russo, R.: Adding new hair to the 3-charge black ring. Class. Quant. Grav. 29, 085006 (2012). https://doi.org/10.1088/0264-9381/29/8/085006. [arXiv:1201.2585 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Nishino, H., Sezgin, E.: Matter and gauge couplings of \(N=2\) supergravity in six-dimensions. Phys. Lett. 144B, 187 (1984). https://doi.org/10.1016/0370-2693(84)91800-8

    Article  ADS  MathSciNet  Google Scholar 

  75. Nishino, H., Sezgin, E.: The complete \(N=2\), \(d=6\) supergravity with matter and Yang–Mills couplings. Nucl. Phys. B 278, 353 (1986). https://doi.org/10.1016/0550-3213(86)90218-X

    Article  ADS  MathSciNet  Google Scholar 

  76. Het Lam, H., Vandoren, S.: BPS solutions of six-dimensional (1, 0) supergravity coupled to tensor multiplets. JHEP 1806, 021 (2018). https://doi.org/10.1007/JHEP06(2018)021. [arXiv:1804.04681 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Cano, P.A., Ortin, T.: The structure of all the supersymmetric solutions of ungauged \({\cal{N}} = (1,0), d=6\) supergravity. Class. Quant. Grav. 36(12), 125007 (2019). https://doi.org/10.1088/1361-6382/ab1f1e

    Article  ADS  MathSciNet  Google Scholar 

  78. Shigemori, M.: Perturbative 3-charge microstate geometries in six dimensions. JHEP 1310, 169 (2013). https://doi.org/10.1007/JHEP10(2013)169. [arXiv:1307.3115 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Bena, I., Turton, D., Walker, R., Warner, N.P.: Integrability and black-hole microstate geometries. JHEP 1711, 021 (2017). https://doi.org/10.1007/JHEP11(2017)021. [arXiv:1709.01107 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Niehoff, B.E., Warner, N.P.: Doubly-fluctuating BPS solutions in six dimensions. JHEP 1310, 137 (2013). https://doi.org/10.1007/JHEP10(2013)137. [arXiv:1303.5449 [hep-th]]

    Article  ADS  Google Scholar 

  81. de Boer, J., El-Showk, S., Messamah, I., Van den Bleeken, D.: A bound on the entropy of supergravity? JHEP 1002, 062 (2010). https://doi.org/10.1007/JHEP02(2010)062. [arXiv:0906.0011 [hep-th]]

    Article  MathSciNet  MATH  Google Scholar 

  82. Tyukov, A., Walker, R., Warner, N.P.: Tidal stresses and energy gaps in microstate geometries. JHEP 1802, 122 (2018). https://doi.org/10.1007/JHEP02(2018)122. [arXiv:1710.09006 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Raju, S., Shrivastava, P.: Critique of the fuzzball program. Phys. Rev. D 99(6), 066009 (2019). https://doi.org/10.1103/PhysRevD.99.066009

    Article  ADS  MathSciNet  Google Scholar 

  84. Bena, I., Heidmann, P., Turton, D.: \(\text{ AdS }_{{2}}\) holography: mind the cap. JHEP 1812, 028 (2018). https://doi.org/10.1007/JHEP12(2018)028. [arXiv:1806.02834 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  85. Bianchi, M., Consoli, D., Grillo, A., Morales, J.F.: The dark side of fuzzball geometries. JHEP 1905, 126 (2019). https://doi.org/10.1007/JHEP05(2019)126. [arXiv:1811.02397 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Bena, I., Martinec, E.J., Walker, R., Warner, N.P.: Early scrambling and capped BTZ geometries. JHEP 1904, 126 (2019). https://doi.org/10.1007/JHEP04(2019)126. [arXiv:1812.05110 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Bombini, A., Galliani, A.: \(\text{ AdS }_{{3}}\) four-point functions from \( \frac{1}{8} \) -BPS states. JHEP 1906, 044 (2019). https://doi.org/10.1007/JHEP06(2019)044. [arXiv:1904.02656 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  88. Tian, J., Hou, J., Chen, B.: Holographic correlators on integrable superstrata. Nucl. Phys. B 948, 114766 (2019). https://doi.org/10.1016/j.nuclphysb.2019.114766. [arXiv:1904.04532 [hep-th]]

    Article  MathSciNet  Google Scholar 

  89. Bena, I., Heidmann, P., Monten, R., Warner, N.P.: Thermal decay without information loss in horizonless microstate geometries. SciPost Phys. 7(5), 063 (2019). https://doi.org/10.21468/SciPostPhys.7.5.063

  90. Bena, I., Tyukov, A.: BTZ trailing strings. arXiv:1911.12821 [hep-th]

  91. Heidmann, P., Mayerson, D.R., Walker, R., Warner, N.P.: Holomorphic waves of black hole microstructure. arXiv:1910.10714 [hep-th]

  92. Maldacena, J.M., Strominger, A., Witten, E.: Black hole entropy in M theory. JHEP 9712, 002 (1997). https://doi.org/10.1088/1126-6708/1997/12/002. [arXiv:hep-th/9711053]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. Denef, F., Gaiotto, D., Strominger, A., Van den Bleeken, D., Yin, X.: Black hole deconstruction. JHEP 1203, 071 (2012). https://doi.org/10.1007/JHEP03(2012)071. [arXiv:hep-th/0703252]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. de Boer, J., El-Showk, S., Messamah, I., Van den Bleeken, D.: Quantizing \(\cal{N}=2\) multicenter solutions. JHEP 0905, 002 (2009). https://doi.org/10.1088/1126-6708/2009/05/002. [arXiv:0807.4556 [hep-th]]

    Article  MathSciNet  Google Scholar 

  95. Gimon, E.G., Levi, T.S.: Black ring deconstruction. JHEP 0804, 098 (2008). https://doi.org/10.1088/1126-6708/2008/04/098. [arXiv:0706.3394 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Martinec, E.J., Niehoff, B.E.: Hair-brane Ideas on the Horizon. JHEP 1511, 195 (2015). https://doi.org/10.1007/JHEP11(2015)195. [arXiv:1509.00044 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. Tyukov, A., Warner, N.P.: Supersymmetry and wrapped branes in microstate geometries. JHEP 1710, 011 (2017). https://doi.org/10.1007/JHEP10(2017)011. [arXiv:1608.04023 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. Roy, P., Srivastava, Y.K., Virmani, A.: Hair on non-extremal D1–D5 bound states. JHEP 1609, 145 (2016). https://doi.org/10.1007/JHEP09(2016)145. [arXiv:1607.05405 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. Bombini, A., Giusto, S.: Non-extremal superdescendants of the D1D5 CFT. JHEP 1710, 023 (2017). https://doi.org/10.1007/JHEP10(2017)023. [arXiv:1706.09761 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. Bena, I., Giusto, S., Ruef, C., Warner, N.P.: Supergravity solutions from floating branes. JHEP 1003, 047 (2010). https://doi.org/10.1007/JHEP03(2010)047. [arXiv:0910.1860 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. Martinec, E.J., Massai, S.: String theory of supertubes. JHEP 1807, 163 (2018). https://doi.org/10.1007/JHEP07(2018)163. [arXiv:1705.10844 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. Martinec, E.J., Massai, S., Turton, D.: String dynamics in NS5-F1-P geometries. JHEP 2018, 31 (2018). https://doi.org/10.1007/JHEP09(2018)031

    Article  MathSciNet  MATH  Google Scholar 

  103. Martinec, E.J., Massai, S., Turton, D.: Little strings, long strings, and fuzzballs. JHEP 1911, 019 (2019). https://doi.org/10.1007/JHEP11(2019)019. [arXiv:1906.11473 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  104. Skenderis, K., Taylor, M.: The fuzzball proposal for black holes. Phys. Rept. 467, 117 (2008). https://doi.org/10.1016/j.physrep.2008.08.001. [arXiv:0804.0552 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  105. Baggio, M., de Boer, J., Papadodimas, K.: A non-renormalization theorem for chiral primary 3-point functions. JHEP 1207, 137 (2012). https://doi.org/10.1007/JHEP07(2012)137. [arXiv:1203.1036 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. Galliani, A., Giusto, S., Russo, R.: Holographic 4-point correlators with heavy states. JHEP 1710, 040 (2017). https://doi.org/10.1007/JHEP10(2017)040. [arXiv:1705.09250 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. Bombini, A., Galliani, A., Giusto, S., Moscato, E., Russo, R.: Unitary 4-point correlators from classical geometries. Eur. Phys. J. C 78(1), 8 (2018). https://doi.org/10.1140/epjc/s10052-017-5492-3

    Article  ADS  Google Scholar 

  108. Giusto, S., Russo, R., Wen, C.: Holographic correlators in \(\text{ AdS }_{{3}}\). JHEP 1903, 096 (2019). https://doi.org/10.1007/JHEP03(2019)096. [arXiv:1812.06479 [hep-th]]

    Article  ADS  Google Scholar 

  109. Garcia i Tormo, J., Taylor, M.: One point functions for black hole microstates. Gen. Relativ. Gravit. 51(7), 89 (2019). https://doi.org/10.1007/s10714-019-2566-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  110. Eperon, F.C., Reall, H.S., Santos, J.E.: Instability of supersymmetric microstate geometries. JHEP 1610, 031 (2016). https://doi.org/10.1007/JHEP10(2016)031. [arXiv:1607.06828 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Keir, J.: Wave propagation on microstate geometries. Ann. Henri Poincaré 21, 705–760 (2020). https://doi.org/10.1007/s00023-019-00874-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. Eperon, F.C.: Geodesics in supersymmetric micro state geometries. Class. Quant. Grav. 34(16), 165003 (2017). https://doi.org/10.1088/1361-6382/aa7bfe

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. Marolf, D., Michel, B., Puhm, A.: A rough end for smooth microstate geometries. JHEP 1705, 021 (2017). https://doi.org/10.1007/JHEP05(2017)021. [arXiv:1612.05235 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. Dabholkar, A., Gomes, J., Murthy, S., Sen, A.: Supersymmetric index from black hole entropy. JHEP 1104, 034 (2011). https://doi.org/10.1007/JHEP04(2011)034. [arXiv:1009.3226 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. Chowdhury, A., Garavuso, R.S., Mondal, S., Sen, A.: Do all BPS black hole microstates carry zero angular momentum? JHEP 1604, 082 (2016). https://doi.org/10.1007/JHEP04(2016)082. [arXiv:1511.06978 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  116. Sachdev, S., Ye, J.: Gapless spin fluid ground state in a random, quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339 (1993). https://doi.org/10.1103/PhysRevLett.70.3339. [arXiv:cond-mat/9212030]

    Article  ADS  Google Scholar 

  117. Kitaev, A.: A simple model of quantum holography. KITP strings seminar and Entanglement 2015 program (Feb. 12, April 7, and May 27, 2015) . http://online.kitp.ucsb.edu/online/entangled15/

  118. Sárosi, G.: \(\text{ AdS }_{{2}}\) holography and the SYK model. PoS Modave 2017, 001 (2018). https://doi.org/10.22323/1.323.0001. [arXiv:1711.08482 [hep-th]]

    Article  Google Scholar 

  119. Maldacena, J.M., Michelson, J., Strominger, A.: Anti-de Sitter fragmentation. JHEP 9902, 011 (1999). https://doi.org/10.1088/1126-6708/1999/02/011. [arXiv:hep-th/9812073]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. Almheiri, A., Polchinski, J.: Models of \(\text{ AdS }_{{2}}\) backreaction and holography. JHEP 1511, 014 (2015). https://doi.org/10.1007/JHEP11(2015)014. [arXiv:1402.6334 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  121. Bena, I., Berkooz, M., de Boer, J., El-Showk, S., Van den Bleeken, D.: Scaling BPS solutions and pure-Higgs states. JHEP 1211, 171 (2012). https://doi.org/10.1007/JHEP11(2012)171. [arXiv:1205.5023 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. Heidmann, P., Mondal, S.: The full space of BPS multicenter states with pure D-brane charges. JHEP 1906, 011 (2019). https://doi.org/10.1007/JHEP06(2019)011. [arXiv:1810.10019 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. Bianchi, M., Consoli, D., Morales, J.F.: Probing fuzzballs with particles, waves and strings. JHEP 1806, 157 (2018). https://doi.org/10.1007/JHEP06(2018)157. [arXiv:1711.10287 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. Gubser, S.S.: Drag force in AdS/CFT. Phys. Rev. D 74, 126005 (2006). https://doi.org/10.1103/PhysRevD.74.126005. [arXiv:hep-th/0605182]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank Iosif Bena, Nejc Čeplak, Stefano Giusto, Emil Martinec, Rodolfo Russo, David Turton and Nick Warner for fruitful collaborations and for sharing illuminating insights. I also thank Pierre Heidmann, Daniel Mayerson and Alexander Tyukov for valuable discussions. The work of MS was supported in part by JSPS KAKENHI Grant Numbers 16H03979, and MEXT KAKENHI Grant Numbers 17H06357 and 17H06359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Shigemori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Topical Collection: The Fuzzball Paradigm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shigemori, M. Superstrata. Gen Relativ Gravit 52, 51 (2020). https://doi.org/10.1007/s10714-020-02698-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02698-8

Keywords

Navigation