Skip to main content
Log in

A polyphasic approach to delineate species in Bipolaris

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Bipolaris species are important plant pathogens with a worldwide distribution in tropical and temperate environments. Species recognition in Bipolaris has been problematic due to a lack of molecular data from ex-type cultures, the use of few gene regions for species resolution and overlapping morphological characters. In this study, we evaluate the efficiency of different DNA barcodes in species delimitation in Bipolaris by phylogenetic analyses, Automatic Barcode Gap Discovery and Objective Clustering. GAPDH is determined to be the best single marker for the genus. These approaches are used to clarify the taxonomic placement of all sequences currently named as Bipolaris in GenBank based on ITS and GAPDH gene sequence data. In checking various publications, we found that the majority of new host records of fungal species published in the Plant Disease journal from 2010 to 2019 were based on BLAST searches of the ITS sequences and up to 82% of those records could be erroneous. Therefore, relying on BLAST searches from GenBank to name species is not recommended. Editorial boards of journals and reviewers of new record papers should be aware of this problem. In naming Bipolaris species, whether new or known, it is recommended to perform phylogenetic analyses based on GAPDH using the correct taxon sampling for accurate results and the species relationship should have reliable statistical support. At least two new species are represented by molecular data in GenBank and we provide an updated taxonomic revision of Bipolaris. We accept 45 species in Bipolaris and notes are provided for all the species including hosts and geographic distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmadpour A, Heidarian Z, Donyadoost-Chelan M, Javan-Nikkhah M, Tsukiboshi T (2012) A new species of Bipolaris from Iran. Mycotaxon 120:301–307

    Google Scholar 

  • Alcorn JL (1982) New Cochliobolus and Bipolaris species. Mycotaxon 15:1–19

    Google Scholar 

  • Alcorn JL (1983) Generic concepts of Drechslera, Bipolaris and Exserohilum. Mycotaxon 17:1–86

    Google Scholar 

  • Alcorn JL (1990) Additions to Cochliobolus, Bipolaris and Curvularia. Mycotaxon 39:361–392

    Google Scholar 

  • Alcorn JL (1991) New combinations and synonymy in Bipolaris and Curvularia, and a new species of Exserohilum. Mycotaxon 41:329–343

    Google Scholar 

  • Amaradasa BS, Amundsen K (2014) First report of Curvularia inaequalis and Bipolaris spicifera causing leaf blight of buffalograss in Nebraska. Am Phytopathol Soc 98:279

    CAS  Google Scholar 

  • Amaradasa BS, Madrid H, Groenewald JZ, Crous PW, Amundsen K (2014) Porocercospora seminalis gen. et comb. nov., the causal organism of buffalograss false smut. Mycologia 106:77–85

    PubMed  Google Scholar 

  • Berbee ML, Pirseyedi M, Hubbard S (1999) Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91:964–977

    CAS  Google Scholar 

  • Berbee ML, Carmean DA, Winka K (2000) Ribosomal DNA and resolution of branching order among the ascomycota: how many nucleotides are enough? Mol Phylogenet Evol 17:337–344

    CAS  PubMed  Google Scholar 

  • Bernardi C, Rey MS, Busso C, Campos T, Mazaro SM, Borin RC, Vismara L, Zanella MG, Haas J, de Farias CRJ, Barros D (2018) First report of Bipolaris secalis causing disease on Jangada Brava (Heliocarpus americanus) seeds in Brazil. Plant Dis 102:1034

    Google Scholar 

  • Boedijn KB (1933) Ueber einige phragmosporen Dematiazeen. Ann Jard Bot Buitenzorg 13:120–134

    Google Scholar 

  • Bruckart WL III, Eskandari FM, Lane WA (2014) First report of leaf necrosis on Microstegium vimineum caused by Bipolaris microstegii in Maryland. Plant Dis 98:852

    PubMed  Google Scholar 

  • Butler EJ, Khan AH (1913) Some new sugarcane diseases. Mem Dept Agric India Bot Ser 6:181–208

    Google Scholar 

  • Cai L, Giraud T, Zhang N, Begerow D, Cai G, Shivas RG (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Divers 50:121–133

    Google Scholar 

  • Herbarium Catalogue (2016) Royal Botanic Gardens, Kew. https://www.herbimi.info/herbimi/home.htm

  • Chamorro M, Mertely JC, Seijo TE, Peres NA (2016) First report of Bipolaris drechsleri causing a leaf spot of Cuphea llavea in Florida. Plant Dis 100:1502

    Google Scholar 

  • Chang HS (1992) Cochliobolus zeae sp. nov., the teleomorph of Bipolaris zeae. Bot Bull Acad Sin 33:175–177

    Google Scholar 

  • Cholil A, de Hoog GS (1982) Variability in Drechslera oryzae. Trans Br Mycol Soc 79:491–496

    Google Scholar 

  • Christensen JJ (1926) Physiologic specialization and parasitism of Helminthosporium sativum. Tech Bull Agric Exp Stn Univ Minn 37:1–101

    Google Scholar 

  • Christiansen SK, Wirsel S, Yun SH, Yoder OC, Turgeon BG (1998) The two Cochliobolus mating type genes are conserved among species but one of them is missing in C. victoriae. Mycol Res 102:919–929

    CAS  Google Scholar 

  • Crous PW, Shivas RG, Wingfield MJ, Summerell BA, Rossman AY, Alves JL, Adams GC, Barreto RW, Bell A, Coutinho ML, Flory SL, Gates G, Grice KR, Hardy GESTJ, Kleczewski NM, Lombard L, Longa CMO, Louis-Seize G, Macedo F, Mahoney DP, Maresi G, Martin-Sanchez PM, Marvanová L, Minnis AM, Morgado LN, Noordeloos ME, Phillips AJL, Quaedvlieg W, Ryan PG, Saiz-Jimenez C, Seifert KA, Swart WJ, Tan YP, Tanney JB, Thu PQ, Videira SIR, Walker DM, Groenewald JZ (2012) Fungal Planet description sheets:128–153. Persoonia 29:146–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding RY, Huang Q, Zhang Q, Wu Y, Reardon RC, Qiang S (2018) First report of leaf spot disease on Microstegium vimineum caused by Bipolaris panici-miliacei in China. Plant Dis 102:1660

    Google Scholar 

  • Dughaishi S, Maharachchikumbura SS, Al-Sadi A (2018) Bipolaris omanensis, a novel saprobic species of Bipolaris from Oman based on morphology and sequence data. Phytotaxa 385:23–30

    Google Scholar 

  • Ellis MB (1971) Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Faris JA (1928) Three Helminthosporium diseases of sugar cane. Phytopathology 18:753–774

    Google Scholar 

  • Farr DF, Rossman AY (2020) Fungal databases, Systematic mycology and microbiology laboratory, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/

  • Fetch TG Jr, Steffenson BJ (1994) Identification of Cochliobolus sativus isolates expressing differential virulence on two-row barley genotypes from North Dakota. Can J Plant Pathol 16:202–206

    Google Scholar 

  • Index Fungorum (2019) https://www.indexfungorum.org/names/names.asp

  • Garibaldi A, Bertetti D, Pensa P, Poli A, Gullino ML (2014) First report of stem rot on Cereus peruvianus monstruosus caused by Bipolaris cactivora (Petr.) Alcorn in Italy. Plant Dis 98:159

    CAS  PubMed  Google Scholar 

  • Garibaldi A, Bertetti D, Pensa P, Matić S, Gullino ML (2019) First report of stem rot caused by Bipolaris cactivora on Echinocereus rigidissimus subsp. rubispinus in Italy. Plant Dis 103:1033

    Google Scholar 

  • Gasparetto BF, Franke LB, Andrade CCL, Dalbosco M, Duarte V, Moreira SI, Alves E (2017) First report of Bipolaris micropus, Curvularia geniculata, Epicoccum sorghinum, and Fusarium incarnatum on Paspalum guenoarum seeds in Rio Grande do Sul, Brazil. Plant Dis 101:1679

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus 2:155–162

    PubMed  PubMed Central  Google Scholar 

  • Hawlitschek O, Nagy ZT, Berger J, Glaw F (2013) Reliable DNA barcoding performance proved for species and island populations of comoran squamate reptiles. PLoS ONE 8:e73368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrich L, Pons J, Ribera I, Balke M (2010) Mitochondrial cox1 sequence data reliably uncover patterns of insect diversity but suffer from high lineage-idiosyncratic error rates. PLoS One 5:e14448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, Mckenzie E, Sarma VV, Boonmee S, Lücking R, Pem D, Bhat DJ, Liu N, Tennakoon DS, Karunarathna A, Jiang SH, Wei JC, Jones EBG, Phillips AJL, Manawasinghe I, Tibpromma S, Jayasiri SC, Sandamali D, Jayawardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ, Dissanayake AJ, Zeng XY, Luo Z, Tian Q, Phukhamsakda C, Thambugala KM, Dai D, Chethana KWT, Ertz D, Pérez-Ortega P, Suija A, Doilom M, Senwanna C, Wijesinghe NS, Konta S, Niranjan M, Zhang S, Ariyawansa HA, Jiang HB, Zhang JF, de Silva NI, Thiyagaraja V, Zhang H, Bezerra JDP, Miranda-Gonzáles R, Aptroot A, Kashiwadani H, Harishchandra D, Aluthmuhandiram JVS, Abeywickrama PD, Bao DF, Devadatha B, Wu HX, Moon KH, Gueidan C, Schumm F, Bundhun D, Mapook A, Monkai J, Chomnunti P, Samarakoon MC, Suetrong S, Chaiwan N, Dayarathne M, Jing Y, Achala R, Bhunjun CS, Zheng J, Liu G, Feng Y, Xie N (2020) Refined families of Dothideomycetes. Fungal Divers (in press)

  • Huang Q, Ding RY, Zhang Q, Wu Y, Reardon RC, Qiang S (2017) The first report of leaf blight disease on Microstegium vimineum caused by Bipolaris maydis in China. Plant Dis 101:1680

    Google Scholar 

  • Huang L, Zhu YN, Yang JY, Li DW, Li Y, Bian LM, Ye JR (2018) Shoot blight on Chinese fir (Cunninghamia lanceolata) is caused by Bipolaris oryzae. Plant Dis 102:500–506

    PubMed  Google Scholar 

  • Hyde KD, Abd-Elsalam K, Cai L (2010) Morphology: still essential in a molecular world. Mycotaxon 114:439–451

    Google Scholar 

  • Hyde KD, Nilsson RH, Alias SA, Ariyawansa HA, Blair JE, Cai L, de Cock AWAM, Dissanayake AJ, Glockling SL, Goonasekara ID, Gorczak M, Hahn M, Jayawardena RS, van Kan JAL, Laurence MH, Lévesque CA, Li X, Liu J-K, Maharachchikumbura SSN, Manamgoda DS, Martin FN, McKenzie EHC, McTaggart AR, Mortimer PE, Nair PVR, Pawłowska J, Rintoul TL, Shivas RG, Spies CFJ, Summerell BA, Taylor PWJ, Terhem RB, Udayanga D, Vaghefi N, Walther G, Wilk M, Wrzosek M, Xu J-C, Yan JY, Zhou N (2014) One stop shop: backbones trees for important phytopathogenic genera: I. Fungal Divers 67:21–125

    Google Scholar 

  • Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SSN, Rossi W, Leonardi M, Lee HB, Mun HY, Houbraken J, Nguyen TTT, Jeon SJ, Frisvad JC, Wanasinghe DN, Luücking R, Aptroot A, Cáceres MES, Karunarathna SC, Hongsanan S, Phookamsak R, de Silva NI, Thambugala KM, Jayawardena RS, Senanayake IC, Boonmee S, Chen J, Luo ZL, Phukhamsakda C, Pereira OL, Abreu VP, Rosado AWC, Bart B, Randrianjohany E, Hofstetter V, Gibertoni TB, da Silva Soares AM, Plautz HL Jr, Sotão HMP, Xavier WKS, Bezerra JDP, de Oliveira TGL, de Souza-Motta CM, Magalhães OMC, Bundhun D, Harishchandra D, Manawasinghe IS, Dong W, Zhang SN, Bao DF, Samarakoon MC, Pem D, Karunarathna A, Lin CG, Yang J, Perera RH, Kumar V, Huang SK, Dayarathne MC, Ekanayaka AH, Jayasiri SC, Xiao YP, Konta S, Niskanen T, Liimatainen K, Dai YC, Ji XH, Tian XM, Mešić A, Singh SK, Phutthacharoen K, Cai L, Sorvongxay T, Thiyagaraja V, Norphanphoun C, Chaiwan N, Lu YZ, Jiang HB, Zhang JF, Abeywickrama PD, Aluthmuhandiram JVS, Brahmanage RS, Zeng M, Chethana T, Wei DP, Réblová M, Fournier J, Nekvindová J, Barbosa R, dos Santos JEF, de Oliveira NT, Li GJ, Ertz D, Shang QJ, Phillips AJL, Kuo CH, Camporesi E, Bulgakov TS, Lumyong S, Jones EBG, Chomnunti P, Gentekaki E, Bungartz F, Zeng XY, Fryar S, Tkalčec Z, Liang J, Li GS, Wen TC, Singh PN, Gafforov Y, Promputtha I, Yasanthika E, Goonasekara ID, Zhao RL (2019) Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers 96:1–242

    Google Scholar 

  • Jayawardena RS, Hyde KD, Chethana KWT, Daranagama DA, Dissanayake AJ, Goonasekara ID, Manawasinghe IS, Mapook A, Jayasiri SC, Karunarathna A, Li CG, Phukhamsakda C, Senanayake IC, Wanasinghe DN, Camporesi E, Bulgakov TS, Li XH, Liu M, Zhang W, Yan JY (2018) Mycosphere notes 102–168: saprotrophic fungi on Vitis in China, Italy, Russia and Thailand. Mycosphere 9:1–114

    Google Scholar 

  • Jayawardena RS, Hyde KD, Jeewon R, Ghobad-Nejhad M, Wanasinghe DN, Liu N, Phillips AJ, Oliveira-Filho JR, da Silva GA, Gibertoni TB, Abeywikrama P, Carris LM, Chethana KWT, Dissanayake AJ, Hongsanan S, Jayasiri SC, McTaggart AR, Perera RH, Phutthacharoen K, Savchenko KG, Shivas RG, Thongklang N, Dong W, DePing W, Wijayawardena NN, Kang JC (2019) One stop shop II: taxonomic update with molecular phylogeny for important phytopathogenic genera: 26–50. Fungal Divers 94:41–129

    Google Scholar 

  • Kaspary TE, Bellé C, Moccellin R, Cutti L, Rigon CA, Merotto Junior A, de Farias CRJ (2018) Occurrence of Bipolaris oryzae causing leaf spot on Brachypodium distachyon in Brazil. Plant Dis 102:1450

    Google Scholar 

  • Kaspary TE, Bellé C, Rigon CA, Cutti L, Casarotto G, Gallon M, Merotto Junior A (2019) Bipolaris oryzae causing brown leaf spot on Echinochloa crus-galli in Southern Brazil. Plant Dis 103:1038

    Google Scholar 

  • Kekkonen M, Mutanen M, Kaila L, Nieminen M, Hebert PD (2015) Delineating species with DNA barcodes: a case of taxon dependent method performance in moths. PLoS ONE 10:e0122481

    PubMed  PubMed Central  Google Scholar 

  • Kellogg EA, Aliscioni SS, Morrone O, Pensiero J, Zuloaga F (2009) A phylogeny of Setaria (Poaceae, Panicoideae, Paniceae) and related genera based on the chloroplast gene ndhF. Int J Plant Sci 170:117–131

    CAS  Google Scholar 

  • Khemmuk W, Shivas RG, Henry RJ, Geering ADW (2016) Fungi associated with foliar diseases of wild and cultivated rice (Oryza spp.) in northern Queensland. Australas Plant Pathol 45:297–308

    CAS  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data. J Mol Evol 29:170–179

    CAS  PubMed  Google Scholar 

  • Kleczewski NM, Flory SL (2010) Leaf blight disease on the invasive grass Microstegium vimineum caused by a Bipolaris sp. Plant Dis 94:807–811

    PubMed  Google Scholar 

  • Lau K, Sheridan JE (1975) Mycoflora of rice (Oryza sativa L.) seed in New Zealand. New Zeal J Agr Res 18:237–250

    Google Scholar 

  • Li PP, Cao ZY, Dong JG, Zhang LH, Jia H, Liu N, Li SH, Hao ZM, Gu SQ, Wang XY (2013) First report of Bipolaris papendorfii causing corn leaf spot in China. Plant Dis 97:1506

    CAS  PubMed  Google Scholar 

  • Li GF, Liu KX, Xiao SQ, Lu YY, Xue CS, Wang GQ (2016) First report of leaf spot of maize (Zea mays) caused by Bipolaris spicifera in China. Plant Dis 100:855

    Google Scholar 

  • Li SJ, Cui XW, Gao M, Wang N, Wang ZY (2017) First report of a leaf spot caused by Bipolaris oryzae on peanut (Arachis hypogaea) in China. Plant Dis 101:1821

    Google Scholar 

  • Li J, Gao XX, Li M, Fang F (2019a) First report of Bipolaris sorokiniana causing leaf spot on Amaranthus viridis in China. Plant Dis 103:2689

    Google Scholar 

  • Li P, Li Z, Li D, Li J (2019b) Report of leaf spot on Pueraria lobata caused by Bipolaris sorokiniana in China. Plant Dis 103:1040

    Google Scholar 

  • Li YG, Meng L, Gong L, Zhao TX, Ji P, Zhang QF, Cui GW (2019c) Occurrence of Bipolaris root rot caused by Bipolaris sorokiniana on Alfalfa in China. Plant Dis 103:2691

    Google Scholar 

  • Liang X, Peng Y, Liu Y, Wang M, Yang Y, Zhang Y (2019) First report of Bipolaris bicolor causing a leaf spot disease on rubber tree. J Phytopathol 167:553–557

    Google Scholar 

  • Lin X, Stur E, Ekrem T (2015) Exploring genetic divergence in a species-rich insect genus using 2790 DNA barcodes. PLoS ONE 10:e0138993

    PubMed  PubMed Central  Google Scholar 

  • Lind J (1913) Danish fungi. Nordisk Publishers, Copenhagen

    Google Scholar 

  • Liu YX, Shi YP, Deng YY, Cai ZY (2016) First report of leaf spot caused by Bipolaris setariae on rubber tree in China. Plant Dis 100:1240

    Google Scholar 

  • Lourenço CCG, Alves JL, Guatimosim E, Colman A, Barreto RW (2017) Bipolaris marantae sp nov, a novel helminthosporoid species causing foliage blight of the garden plant Maranta leuconeura in Brazil. Mycobiology 45(3):123–128

    PubMed  PubMed Central  Google Scholar 

  • Lucas JA (1998) Plant pathology and plant pathogens. Blackwell Science, Hoboken

    Google Scholar 

  • Macedo DM, Lelis TP, Barreto RW (2016) Bipolaris maydis causing leaf blight on Rottboellia cochinchinensis in Brazil: A major crop pathogen on a major weed. Plant Dis 100:215

    Google Scholar 

  • Manamgoda DS, Cai L, Bahkali AH, Chukeatirote E, Hyde KD (2011) Cochliobolus: an overview and current status of species. Fungal Divers 51:3–42

    Google Scholar 

  • Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H, Chukeatirote E, Shivas RG, Tan YP, Hyde KD (2012) A phylogenetic and taxonomy re-evaluation of the Bipolaris – Cochliobolus – Curvularia complex. Fungal Divers 56:131–144

    Google Scholar 

  • Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, Madrid H, Chukeatirote E, Hyde KD (2014) The genus Bipolaris. Stud Mycol 79:221–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manamgoda DS, Rossman AY, Castlebury LA, Chukeatirote E, Hyde KD (2015) A taxonomic and phylogenetic re-appraisal of the genus Curvularia (Pleosporaceae): human and plant pathogens. Phytotaxa 212:175–198

    Google Scholar 

  • Marin-Felix Y, Groenewald JZ, Cai L, Chen Q, Marincowitz S, Barnes I, Bensch K, Braun U, Camporesi E, Damm U, de Beer ZW, Dissanayake A, Edwards J, Giraldo A, Hernández-Restrepo M, Hyde KD, Jayawardena RS, Lombard L, Luangsa-ard J, McTaggart AR, Rossman AY, Sandoval-Denis M, Shen M, Shivas RG, Tan YP, van der Linde EJ, Wingfield MJ, Wood AR, Zhang JQ, Zhang Y, Crous PW (2017a) Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol 86:99–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Felix Y, Senwanna C, Cheewangkoon R, Crous PW (2017b) New species and records of Bipolaris and Curvularia from Thailand. Mycosphere 8:1556–1574

    Google Scholar 

  • Meehan F, Murphy HC (1946) A new Helminthosporium blight of oats. Am Assoc Adv Sci 104:412–414

    Google Scholar 

  • Meier R, Shiyang K, Vaidya G, Ng PK (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728

    PubMed  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA

  • Misra AP (1979) Variability, physiologic specialization and genetics of pathogenicity in graminicolous Helminthosporia affecting cereal crops. Indian Phytopathol 32:1–22

    Google Scholar 

  • Morrone O, Aagesen L, Scataglini MA, Salariato DL, Denham SS, Chemisquy MA, Sede SM, Giussani LM, Kellogg EA, Zuloaga FO (2012) Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification. Cladistics 28:333–356

    Google Scholar 

  • Müller MVG, Germani JC, van der Sand ST (2005) The use of RAPD to characterize Bipolaris sorokiniana isolates. Genet Mol Res 4:642–652

    PubMed  Google Scholar 

  • Nakajima H, Isomi K, Hamasaki T, Ichinoe M (1994) Sorokinianin: a novel phytotoxin produced by the phytopathogenic fungus Bipolaris sorokiniana. Tetrahedron Lett 35:9597–9600

    CAS  Google Scholar 

  • Niu XQ, Yu FY, Zhu H, Qin WQ (2014) First report of leaf spot disease in coconut seedling caused by Bipolaris setariae in China. Plant Dis 98:1742

    PubMed  Google Scholar 

  • Ou SH (1985) Rice diseases, 2nd edn. CAB International, London

    Google Scholar 

  • Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei DP, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li JF, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo ZL, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu JC (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers 95:1–273

    Google Scholar 

  • Postaire B, Magalon H, Bourmaud CAF, Bruggemann JH (2016) Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa). Mol Phylogenet Evol 105:36–49

    PubMed  Google Scholar 

  • Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol 21:1864–1877

    CAS  PubMed  Google Scholar 

  • Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ, Burgess TI, Crous PW (2014) Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 33:1–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A (2012) FigTree version 1.4.0. https://tree.bio.ed.ac.uk/software/figtree/ Accessed 10 Dec 2019

  • Raza M, Zhang ZF, Hyde KD, Diao YZ, Cai L (2019) Culturable plant pathogenic fungi associated with sugarcane in southern China. Fungal Divers 99:1–104

    Google Scholar 

  • Richardson MJ (1990) An annotated list of seed-borne diseases, 4th edn. International Seed Testing Association, Zurich

    Google Scholar 

  • Ronquist F, Huelsenbeck J (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Google Scholar 

  • Rossman AY, Manamgoda DS, Hyde KD (2013a) Proposal to conserve the name Bipolaris against Cochliobolus (Ascomycota: Pleosporales: Pleosporaceae). Taxon 62:1331–1332

    Google Scholar 

  • Rossman AY, Manamgoda DS, Hyde KD (2013b) Proposal to conserve the name Helminthosporium maydis Y. Nisik. & C. Miyake (Bipolaris maydis) against H. maydis Brond. and Ophiobolus heterostrophus (Ascomycota: Pleosporales: Pleosporaceae). Taxon 62:1332–1333

    Google Scholar 

  • Saccardo PA (1886) Sylloge Hyphomycetum. Sylloge Fungorum 4:1–807

    Google Scholar 

  • Sanahuja G, Palmateer AJ (2016) First report of Bipolaris oryzae causing leaf spot on Aechmea tayoensis in Florida. Plant Dis 100:2329

    Google Scholar 

  • Sanahuja G, Lopez P, Chase AR, Palmateer AJ (2017) First report of Bipolaris oryzae causing leaf spot on Strelitzia nicolai in Florida. Plant Dis 101:384

    Google Scholar 

  • Sawada K (1912) Disease of crops in Formosa II, disease of Italian millet. Dept Agric Bull Formosa 64:15–19

    Google Scholar 

  • Scheffer RP (1997) The nature of disease in plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Shi T, Li CP, Li JF, Cai JM, Huang GX (2010) First report of leaf spot caused by Bipolaris setariae on Cassava in China. Plant Dis 94:919

    CAS  PubMed  Google Scholar 

  • Shimizu K, Tanaka C, Peng YL, Tsuda M (1998) Phylogeny of Bipolaris inferred from nucleotide sequences of Brn1, a reductase gene involved in melanin biosynthesis. J Gen Appl Microbiol 44:251–258

    CAS  PubMed  Google Scholar 

  • Shoemaker RA (1959) Nomenclature of Drechslera and Bipolaris, grass parasites segregated from Helminthosporium. Can J Bot 37:879–888

    Google Scholar 

  • Simon BK, Alfonso Y (2011) AusGrass2, https://ausgrass2.myspecies.info/

  • Sisterna MN (1989) Two new species of Bipolaris. Plant Pathol 38:98–100

    Google Scholar 

  • Sivanesan A (1985) New species of Bipolaris. Trans Br Mycol Soc 84:403–421

    Google Scholar 

  • Sivanesan A (1987) Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs. Mycol Res 158:1–261

    Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian CV (1971) Hyphomycetes. An account of Indian species, except Cercosporae. Indian Council of Agricultural Research Publishers, New Delhi

    Google Scholar 

  • Subramanian CV, Bhat VR (1978) Taxonomy of Drechslera oryzae (Breda de Haan) Subramanian & Jain a reappraisal. Proc Int Symp Taxon Fungi (1973) 1:136–148

    Google Scholar 

  • Sugawara F, Strobel G, Fisher LE, Van Duyne GD, Clardy J (1985) Bipolaroxin, a selective phytotoxin produced by Bipolaris cynodontis. Proc Natl Acad Sci USA 82:8291–8294

    CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Tan YP, Madrid H, Crous PW, Shivas RG (2014) Johnalcornia gen. et. comb. nov., and nine new combinations in Curvularia based on molecular phylogenetic analysis. Australas Plant Pathol 43:589–603

    Google Scholar 

  • Tan YP, Crous PW, Shivas RG (2016) Eight novel Bipolaris species identified from John L. Alcorn’s collections at the Queensland Plant Pathology Herbarium (BRIP). Mycol Prog 15:1203–1214

    Google Scholar 

  • Tänzler R, Sagata K, Surbakti S, Balke M, Riedel A (2012) DNA barcoding for community ecology-how to tackle a hyperdiverse, mostly undescribed Melanesian fauna. PLoS ONE 7:e28832

    PubMed  PubMed Central  Google Scholar 

  • Tarnowski TL, Palmateer AJ, Crane JH (2010) First report of fruit rot on Hylocereus undatus caused by Bipolaris cactivora in South Florida. Plant Dis 94:1506

    CAS  PubMed  Google Scholar 

  • Tian P, Smith SM (2018) First report of leaf spot caused by Bipolaris victoriae on switchgrass in Georgia. Plant Dis 102:675

    Google Scholar 

  • Tomaso-Peterson M, Balbalian CJ (2010) First report of Bipolaris oryzae causing leaf spot of switchgrass in Mississippi. Plant Dis 94:643

    CAS  PubMed  Google Scholar 

  • Vu AL, Dee MM, Gualandi RJ Jr, Huff S, Zale J, Gwinn KD, Ownley BH (2011a) First report of leaf spot caused by Bipolaris spicifera on switchgrass in the United States. Plant Dis 95:1191

    CAS  PubMed  Google Scholar 

  • Vu AL, Dee MM, Gwinn KD, Ownley BH (2011b) First report of spot blotch and common root rot caused by Bipolaris sorokiniana on switchgrass in Tennessee. Plant Dis 95:1195

    CAS  PubMed  Google Scholar 

  • Vu AL, Dee MM, Zale J, Gwinn KD, Ownley BH (2013) First report of leaf spot caused by Bipolaris oryzae on switchgrass in Tennessee. Plant Dis 97:1654

    CAS  PubMed  Google Scholar 

  • Wang HN, Wei SH (2016) First report of Bipolaris leaf blight on Arundo donax caused by Bipolaris sorokiniana in China. Plant Dis 100:2322

    Google Scholar 

  • Wang ZY, Xie SN, Wang Y, Wu HY, Zhang M (2012) First report of Bipolaris peregianensis causing leaf spot of Cynodon dactylon in China. Plant Dis 96:917

    CAS  PubMed  Google Scholar 

  • Wang HN, Wei SH, Yang XH (2019) First report of Bipolaris leaf spot caused by Bipolaris oryzae on Typha orientalis in China. Plant Dis 103:1031

    Google Scholar 

  • Waxman KD, Bergstrom GC (2011) First report of a leaf spot caused by Bipolaris oryzae on switchgrass in New York. Plant Dis 95:1192

    CAS  PubMed  Google Scholar 

  • Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SS, Ekanayaka AH, Tian Q, Phookamsak R (2018) Outline of ascomycota: 2017. Fungal Divers 88:167–263

    Google Scholar 

  • Wu WS (1983) Sorghum disease in Taiwan and characterization and control of its seed borne pathogens. Bull Plant Protect Taiwan 25:1–13

    Google Scholar 

  • Xiao JZ, Tsuge T, Doke N (1992) Further evaluation of the significance of BZR-toxin produced by Bipolaris zeicola race 3 in pathogenesis on rice and maize plants. Physiol Mol Plant Pathol 40:359–370

    CAS  Google Scholar 

  • Xiao SQ, Zhang D, Zhao JM, Yuan MY, Wang JH, Xu RD, Li GF, Xue CS (2019) First report of leaf spot of Maize (Zea mays) caused by Bipolaris setariae in China. Plant Dis 104:582

    Google Scholar 

  • Xue LH, Liu Y, Wu WX, Liang J, Zhang L, Huang XQ, Zhou XQ, Johnson RD, Li CJ, Wang JJ, Hu JQ (2016) First report of leaf spot of Hemarthria altissima caused by Bipolaris zeae in China. Plant Dis 101:243

    Google Scholar 

  • Zhang S, Fu Y, Mersha Z, Mo X, Palmateer AJ (2011) First report of a leaf spot on Basella alba caused by a Bipolaris sp. in Florida. Plant Dis 95:880

    CAS  PubMed  Google Scholar 

  • Zhang W, Liu J, Huo P, Zhang T, Nan Z (2017) Characterization and pathogenicity of Bipolaris peregianensis: the causal organism for leaf spot of hybrid bermudagrass in China. Eur J Plant Pathol 148:551–555

    CAS  Google Scholar 

  • Zhao YQ, Zhang DM, Zhang LJ, Yu XY, Yu HR, Shi K, Gao K (2017) First report of brown spot on Jerusalem Artichoke (Helianthus tuberosus) caused by Bipolaris zeae in China. Plant Dis 101:2146

    Google Scholar 

  • Zillinsky FJ (1983) Common diseases of small grain cereals: a guide to identification. Centro Internacional de Mejoramiento de Maiz y Trigo, Mexico

    Google Scholar 

  • Zummo N, Gourley LM (1987) Occurrence of target leaf-spot (Bipolaris sorghicola) on Sorghum in Mississippi. Plant Dis 71:1045

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yunnan Provincial Key Programs of Yunnan Eco-friendly Food International Cooperation Research Center Project under Grant 2019ZG00908. KD Hyde would like to thank the Thailand Research Fund, grant RDG6130001 entitled “Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion”. We would like to thank Dr Sophie Brouillet (Systematique, Adaptation et Evolution, Sorbonne University Pierre and Marie Curie Campus (UPMC), France) for providing critical insight and expertise to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin D. Hyde or Jun Sheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file3 (DOCX 15 kb)

Sequences deleted from the bulk ITS dataset. These sequences are not currently classified under Bipolaris

Supplementary file1 (PDF 14353 kb)

Phylogenetic tree generated by maximum likelihood analysis of all ITS sequences of Bipolaris from GenBank. RAxML bootstrap support values ≥ 60% (BT) are shown respectively near the nodes. All separate clusters with statistical support are shown (13 separate clusters to the accepted type species). The scale bar indicates 0.02 changes per site and the tree is rooted with C. buchloes and C. subpapendorfii

Supplementary file4 (DOCX 25 kb)

List of all the sequences (66 in total) which did not cluster with their respective type sequences based on phylogenetic analyses of the ITS regions ((≥60% BT)

Supplementary file5 (DOCX 20 kb)

List of 57 sequences which did not cluster with any type sequences based on phylogenetic analyses of the ITS regions (≥ 60% BT)

Supplementary file2 (PDF 460 kb)

Phylogenetic tree generated by maximum likelihood analysis of GAPDH sequence data of Bipolaris type sequences. RAxML bootstrap support values ≥ 60% (BT) are shown respectively near the nodes. The scale bar indicates 0.02 changes per site and the tree is rooted with C. buchloes and C. subpapendorfii. Clade 1 and 2 represents the sequences that formed separate clades to the accepted type species of Bipolaris

Supplementary file6 (DOCX 18 kb)

List of GAPDH sequences which did not cluster with their respective type sequences (≥ 60% BT) and 3 sequences which formed separate clusters

Supplementary file7 (XLS 46 kb)

Estimates of evolutionary divergence between sequences in the ITS type dataset. Pairwise distance between 45 nucleotide sequences based on the K2P model. The analysis included all codon positions and pairwise deletion of gaps for each sequence pair

Supplementary file8 (XLS 45 kb)

Estimates of evolutionary divergence between sequences in the GAPDH type dataset. Pairwise distance between 44 nucleotide sequences based on the K2P model. The analysis included all codon positions and pairwise deletion of gaps for each sequence pair

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunjun, C.S., Dong, Y., Jayawardena, R.S. et al. A polyphasic approach to delineate species in Bipolaris. Fungal Diversity 102, 225–256 (2020). https://doi.org/10.1007/s13225-020-00446-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-020-00446-6

Keywords

Navigation