Skip to main content
Log in

On the variation of the Hardy–Littlewood maximal functions on finite graphs

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

Let G be a connected and finite graph with the set of vertices V and the set of edges E. Let \(M_{G}\) be the Hardy–Littlewood maximal function defined on graph G and \(M_{\upalpha ,G}\) \((0\le \upalpha <1)\) be its fractional version. In this paper, the regularity problems related to \(M_{G}\) and \(M_{\upalpha ,G}\) will be studied. We show that \(M_{G}:\mathrm{BV}_p (G)\rightarrow \mathrm{BV}_p(G)\) is bounded and \(M_{\upalpha ,G}: \ell ^p(V)\rightarrow \mathrm{BV}_q(G)\) is bounded and continuous for all \(0<p,\,q\le \infty \). Here \(\mathrm{BV}_p(G)\) is the set of all functions of bounded p-variation on V. The operator norms of \(M_{G}\) and \(M_{\upalpha ,G}\) have also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldaz, J.M., Pérez Lázaro, J.: Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities. Trans. Am. Math. Soc. 359(5), 2443–2461 (2007)

    Article  MathSciNet  Google Scholar 

  2. Beltran, D., Madrid, J.: Endpoint Sobolev continuity of the fractional maximal function in higher dimensions. Math. Res. Not. (to appear). arXiv:1906.00496 (2019)

  3. Beltran, D., Madrid, J.: Regularity of the centered fractional maximal function on radial functions. arXiv:1911.00065.pdf (2019)

  4. Carneiro, E., Mardid, J.: Derivative bounds for fractional maximal functions. Trans. Am. Math. Soc. 369(6), 4063–4092 (2017)

    Article  MathSciNet  Google Scholar 

  5. Carneiro, E., Mardid, J., Pierce, L.B.: Endpoint Sobolev and BV continuity for maximal operators. J. Funct. Anal. 273(10), 3262–3294 (2017)

    Article  MathSciNet  Google Scholar 

  6. Carneiro, E., Moreira, D.: On the regularity of maximal operators. Proc. Am. Math. Soc. 136(12), 4395–4404 (2008)

    Article  MathSciNet  Google Scholar 

  7. Cowling, M., Meda, S., Setti, A.G.: Estimates for functions of the Laplace operator on homogeneous trees. Trans. Am. Math. Soc. 352(9), 4271–4293 (2000)

    Article  MathSciNet  Google Scholar 

  8. Dungey, N.: A Littlewood–Paley–Stein estimate on graphs and groups. Stud. Math. 189(2), 113–129 (2008)

    Article  MathSciNet  Google Scholar 

  9. González-Riquelme, C.: Sobolev regularity of polar fractional maximal functions. arXiv:1910.05590 (2019)

  10. Hajłasz, P., Malý, J.: On approximate differentiability of the maximal function. Proc. Am. Math. Soc. 138(1), 165–174 (2010)

    Article  MathSciNet  Google Scholar 

  11. Hajłasz, P., Onninen, J.: On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 29, 167–176 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Kinnunen, J.: The Hardy–Littlewood maximal function of a Sobolev function. Isr. J. Math. 100, 117–124 (1997)

    Article  MathSciNet  Google Scholar 

  13. Kinnunen, J., Lindqvist, P.: The derivative of the maximal function. J. Reine Angew. Math. 503, 161–167 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35(4), 529–535 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kurka, O.: On the variation of the Hardy–Littlewood maximal function. Ann. Acad. Sci. Fenn. Math. 40, 109–133 (2015)

    Article  MathSciNet  Google Scholar 

  16. Korányi, A., Picardello, M.A.: Boundary behaviour of eigenfunctions of the Laplace operator on trees. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13(3), 389–399 (1986)

    MathSciNet  MATH  Google Scholar 

  17. Liu, F.: Continuity and approximate differentiability of multisublinear fractional maximal functions. Math. Inequal. Appl. 21(1), 25–40 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Liu, F., Chen, T., Wu, H.: A note on the endpoint regularity of the Hardy–Littlewood maximal functions. Bull. Austral. Math. Soc. 94(1), 121–130 (2016)

    Article  MathSciNet  Google Scholar 

  19. Liu, F., Mao, S.: On the regularity of the one-sided Hardy–Littlewood maximal functions. Czech. Math. J. 67(142), 219–234 (2017)

    Article  MathSciNet  Google Scholar 

  20. Liu, F., Wu, H.: On the regularity of the multisublinear maximal functions. Can. Math. Bull. 58(4), 808–817 (2015)

    Article  MathSciNet  Google Scholar 

  21. Liu, F., Wu, H.: Endpoint regularity of multisublinear fractional maximal functions. Can. Math. Bull. 60(3), 586–603 (2017)

    Article  MathSciNet  Google Scholar 

  22. Liu, F., Wu, H.: Regularity of discrete multisublinear fractional maximal functions. Sci. China Math. 60(8), 1461–1476 (2017)

    Article  MathSciNet  Google Scholar 

  23. Liu, F., Wu, H.: On the regularity of maximal operators supported by submanifolds. J. Math. Anal. Appl. 453, 144–158 (2017)

    Article  MathSciNet  Google Scholar 

  24. Luiro, H.: Continuity of the maixmal operator in Sobolev spaces. Proc. Am. Math. Soc. 135(1), 243–251 (2007)

    Article  MathSciNet  Google Scholar 

  25. Luiro, H.: On the regularity of the Hardy–Littlewood maximal operator on subdomains of \({\mathbb{R}}^d\). Proc. Edinb. Math. Soc. 53(1), 211–237 (2010)

    Article  MathSciNet  Google Scholar 

  26. Luiro, H.: The variation of the maximal function of a radial function. Ark. Mat. 56(1), 147–161 (2018)

    Article  MathSciNet  Google Scholar 

  27. Luiro, H., Madrid, J.: The variation of the fractional maximal function of a radial function. Int. Math. Res. Not. (to appear). arXiv:1710.07233

  28. Madrid, J.: Endpoint Sobolev and BV continuity for maximal operators, II. Rev. Mater. Iberoam. (to appear). arXiv:1710.03546 (2017)

  29. Russ, E.: Riesz transforms on graphs for \(1\le p\le 2\). Math. Scand. 87(1), 133–160 (2000)

    Article  MathSciNet  Google Scholar 

  30. Soria, J., Tradacete, P.: Best constants for the Hardy–Littlewood maximal operator on finite graphs. J. Math. Anal. Appl. 436(2), 661–682 (2016)

    Article  MathSciNet  Google Scholar 

  31. Tanaka, H.: A remark on the derivative of the one-dimensional Hardy–Littlewood maximal function. Bull. Aust. Math. Soc. 65(2), 253–258 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincerely thanks to the referee for his or her valuable remarks and suggestions, which made this paper more readable. The authors also want to thank Professor Javier Soria for helpful comments during the preparation of this manuscript. The first author was supported partly by NSFC (Grant No. 11701333) and SP-OYSTTT-CMSS (Grant No. Sxy2016K01). The second author was supported partly by NSFC (Grant Nos. 11471041, 11671039, 11871101) and NSFC-DFG (Grant No. 11761131002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Xue, Q. On the variation of the Hardy–Littlewood maximal functions on finite graphs. Collect. Math. 72, 333–349 (2021). https://doi.org/10.1007/s13348-020-00290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-020-00290-6

Keywords

Mathematics Subject Classification

Navigation