Skip to main content

Advertisement

Log in

The formin INF2 in disease: progress from 10 years of research

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Formins are a conserved family of proteins that primarily act to form linear polymers of actin. Despite their importance to the normal functioning of the cytoskeleton, for a long time, the only two formin genes known to be a genetic cause of human disorders were DIAPH1 and DIAPH3, whose mutation causes two distinct forms of hereditary deafness. In the last 10 years, however, the formin INF2 has emerged as an important target of mutations responsible for the appearance of focal segmental glomerulosclerosis, which are histological lesions associated with glomerulus degeneration that often leads to end-stage renal disease. In some rare cases, focal segmental glomerulosclerosis concurs with Charcot–Marie–Tooth disease, which is a degenerative neurological disorder affecting peripheral nerves. All known INF2 gene mutations causing disease map to the exons encoding the amino-terminal domain. In this review, we summarize the structure, biochemical features and functions of INF2, conduct a systematic and comprehensive analysis of the pathogenic INF2 mutations, including a detailed study exon-by-exon of patient cases and mutations, address the impact of the pathogenic mutations on the structure, regulation and known functions of INF2, draw a series of conclusions that could be useful for INF2-related disease diagnosis, and suggest lines of research for future work on the molecular mechanisms by which INF2 causes disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

aHUS:

Atypical hemolytic uremic syndrome

ARM:

Armadillo

CAP:

Cyclase-associated protein

CMT:

Charcot–Marie–Tooth

DAD:

Diaphanous autoinhibitory domain

DID:

Diaphanous inhibitory domain

ESRD:

End-stage renal disease

FH:

Formin homology

FSGS:

Focal segmental glomerulosclerosis

INF2:

Inverted formin 2

KAc-actin:

Lysine-acetylated actin

MCN:

Minimal change nephropathy

WH2:

Wiskott–Aldrich syndrome homology 2

References

  1. Goode BL, Eck MJ (2007) Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 76:593–627. https://doi.org/10.1146/annurev.biochem.75.103004.142647

    Article  CAS  Google Scholar 

  2. Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11:62–74. https://doi.org/10.1038/nrm2816

    Article  CAS  Google Scholar 

  3. Schönichen A, Geyer M (2010) Fifteen formins for an actin filament: a molecular view on the regulation of human formins. Biochim Biophys Acta Mol Cell Res 1803:152–163. https://doi.org/10.1016/j.bbamcr.2010.01.014

    Article  CAS  Google Scholar 

  4. Pruyne D (2016) Revisiting the phylogeny of the animal formins: two new subtypes, relationships with multiple Wing Hairs proteins, and a lost human formin. PLoS ONE 11:e0164067. https://doi.org/10.1371/journal.pone.0164067

    Article  CAS  Google Scholar 

  5. Alberts AS (2001) Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J Biol Chem 276:2824–2830. https://doi.org/10.1074/jbc.M006205200

    Article  CAS  Google Scholar 

  6. Bartolini F, Gundersen GG (2010) Formins and microtubules. Biochim Biophys Acta (Mol Cell Res) 1803:164–173. https://doi.org/10.1016/j.bbamcr.2009.07.006

    Article  CAS  Google Scholar 

  7. Ishizaki T, Morishima Y, Okamoto M, Furuyashiki T, Kato T, Narumiya S (2001) Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat Cell Biol 3:8–14. https://doi.org/10.1038/35050598

    Article  CAS  Google Scholar 

  8. Palazzo AF, Cook TA, Alberts AS, Gundersen GG (2001) mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 3:723–729. https://doi.org/10.1038/35087035

    Article  CAS  Google Scholar 

  9. Chhabra ES, Ramabhadran V, Gerber SA, Higgs HN (2009) INF2 is an endoplasmic reticulum-associated formin protein. J Cell Sci 122:1430–1440. https://doi.org/10.1242/jcs.040691

    Article  CAS  Google Scholar 

  10. Ramabhadran V, Korobova F, Rahme GJ, Higgs HN (2011) Splice variant-specific cellular function of the formin INF2 in maintenance of Golgi architecture. Mol Biol Cell 22:4822–4833. https://doi.org/10.1091/mbc.E11-05-0457

    Article  CAS  Google Scholar 

  11. Madrid R, Aranda JF, Rodríguez-Fraticelli AE, Ventimiglia L, Andres-Delgado L, Shehata M, Fanayan S, Shahheydari H, Gomez S, Jimenez A, Martin-Belmonte F, Byrne JA, Alonso MA (2010) The formin INF2 regulates basolateral-to-apical transcytosis and lumen formation in association with Cdc42 and MAL2. Dev Cell 18:814–827. https://doi.org/10.1016/j.devcel.2010.04.001

    Article  CAS  Google Scholar 

  12. Chhabra ES, Higgs HN (2006) INF2 is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J Biol Chem 281:26754–26767. https://doi.org/10.1074/jbc.M604666200

    Article  CAS  Google Scholar 

  13. Gurel PS, Ge P, Grintsevich EE, Shu R, Blanchoin L, Zhou ZH, Reisler E, Higgs HN (2014) INF2-mediated severing through actin filament encirclement and disruption. Curr Biol 24:156–164. https://doi.org/10.1016/j.cub.2013.12.018

    Article  CAS  Google Scholar 

  14. Ramabhadran V, Hatch AL, Higgs HN (2013) Actin monomers activate inverted formin 2 by competing with its autoinhibitory interaction. J Biol Chem 288:26847–26855. https://doi.org/10.1074/jbc.M113.472415

    Article  CAS  Google Scholar 

  15. Fernandez-Barrera J, Alonso MA (2018) Coordination of microtubule acetylation and the actin cytoskeleton by formins. Cell Mol Life Sci 75:3181–3191. https://doi.org/10.1007/s00018-018-2855-3

    Article  CAS  Google Scholar 

  16. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11:353–365. https://doi.org/10.1038/nrm2890

    Article  CAS  Google Scholar 

  17. Posern G, Treisman R (2006) Actin' together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16:588–596. https://doi.org/10.1016/j.tcb.2006.09.008

    Article  CAS  Google Scholar 

  18. Fernandez-Barrera J, Bernabe-Rubio M, Casares-Arias J, Rangel L, Fernandez-Martin L, Correas I, Alonso MA (2018) The actin-MRTF-SRF transcriptional circuit controls tubulin acetylation via α-TAT1 gene expression. J Cell Biol 217:929–944. https://doi.org/10.1083/jcb.201702157

    Article  CAS  Google Scholar 

  19. Wales P, Schuberth CE, Aufschnaiter R, Fels J, Garcia-Aguilar I, Janning A, Dlugos CP, Schäfer-Herte M, Klingner C, Wälte M, Kuhlmann J, Menis E, Hockaday Kang L, Maier KC, Hou W, Russo A, Higgs HN, Pavenstädt H, Vogl T, Roth J, Qualmann B, Kessels MM, Martin DE, Mulder B, Wedlich-Söldner R (2016) Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. eLife 5:e19850. https://doi.org/10.7554/eLife.19850

    Article  Google Scholar 

  20. Bayraktar S, Nehrig J, Menis E, Karli K, Janning A, Struk T, Halbritter J, Michgehl U, Krahn MP, Schuberth CE, Pavenstädt HP, Wedlich-Söldner RA (2019) A deregulated stress response underlies distinct INF2 associated disease profiles. bioRxiv. https://doi.org/10.1101/838086

    Article  Google Scholar 

  21. Mu A, Fung TS, Kettenbach AN, Chakrabarti R, Higgs HN (2019) A complex containing lysine-acetylated actin inhibits the formin INF2. Nat Cell Biol 21:592–602. https://doi.org/10.1038/s41556-019-0307-4

    Article  CAS  Google Scholar 

  22. Mu A, Fung TS, Francomacaro LM, Huynh T, Kotila T, Svindrych Z, Higgs HN (2020) Regulation of INF2-mediated actin polymerization through site-specific lysine acetylation of actin itself. Proc Natl Acad Sci USA 117:439–447. https://doi.org/10.1073/pnas.1914072117

    Article  CAS  Google Scholar 

  23. Jin X, Wang J, Gao K, Zhang P, Yao L, Tang Y, Tang L, Ma J, Xiao J, Zhang E, Zhu J, Zhang B, Zhao S-m, Li Y, Ren S, Huang H, Yu L, Wang C (2017) Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer. PLoS Genet 13:e1006748. https://doi.org/10.1371/journal.pgen.1006748

    Article  CAS  Google Scholar 

  24. Andres-Delgado L, Anton OM, Madrid R, Byrne JA, Alonso MA (2010) Formin INF2 regulates MAL-mediated transport of Lck to the plasma membrane of human T lymphocytes. Blood 116:5919–5929. https://doi.org/10.1182/blood-2010-08-300665

    Article  CAS  Google Scholar 

  25. Puertollano R, Martin-Belmonte F, Millan J, de Marco MC, Albar JP, Kremer L, Alonso MA (1999) The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J Cell Biol 145:141–151. https://doi.org/10.1083/jcb.145.1.141

    Article  CAS  Google Scholar 

  26. de Marco MC, Martin-Belmonte F, Kremer L, Albar JP, Correas I, Vaerman JP, Marazuela M, Byrne JA, Alonso MA (2002) MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J Cell Biol 159:37–44. https://doi.org/10.1083/jcb.200206033

    Article  CAS  Google Scholar 

  27. Bartolini F, Andres-Delgado L, Qu X, Nik S, Ramalingam N, Kremer L, Alonso MA, Gundersen GG (2016) An mDia1-INF2 formin activation cascade facilitated by IQGAP1 regulates stable microtubules in migrating cells. Mol Biol Cell 27:1797–1808. https://doi.org/10.1091/mbc.E15-07-0489

    Article  CAS  Google Scholar 

  28. Andres-Delgado L, Anton OM, Bartolini F, Ruiz-Saenz A, Correas I, Gundersen GG, Alonso MA (2012) INF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells. J Cell Biol 198:1025–1037. https://doi.org/10.1083/jcb.201202137

    Article  CAS  Google Scholar 

  29. Chakrabarti R, Ji W-K, Stan RV, de Juan SJ, Ryan TA, Higgs HN (2018) INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J Cell Biol 217:251–268. https://doi.org/10.1083/jcb.201709111

    Article  CAS  Google Scholar 

  30. Korobova F, Ramabhadran V, Higgs HN (2013) An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339:464–467. https://doi.org/10.1126/science.1228360

    Article  CAS  Google Scholar 

  31. Manor U, Bartholomew S, Golani G, Christenson E, Kozlov M, Higgs H, Spudich J, Lippincott-Schwartz J (2015) A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4:e08828. https://doi.org/10.7554/eLife.08828

    Article  Google Scholar 

  32. Hatch AL, Gurel PS, Higgs HN (2014) Novel roles for actin in mitochondrial fission. J Cell Sci 127:4549–4560. https://doi.org/10.1242/jcs.153791

    Article  CAS  Google Scholar 

  33. Korobova F, Gauvin TJ, Higgs HN (2014) A role for myosin II in mammalian mtochondrial fission. Curr Biol 24:409–414. https://doi.org/10.1016/j.cub.2013.12.032

    Article  CAS  Google Scholar 

  34. Panzer L, Trübe L, Klose M, Joosten B, Slotman J, Cambi A, Linder S (2016) The formins FHOD1 and INF2 regulate inter- and intra-structural contractility of podosomes. J Cell Sci 129:298–313. https://doi.org/10.1242/jcs.177691

    Article  CAS  Google Scholar 

  35. Shao X, Li Q, Mogilner A, Bershadsky AD, Shivashankar GV (2015) Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim. Proc Natl Acad Sci USA 112:E2595–E2601. https://doi.org/10.1073/pnas.1504837112

    Article  CAS  Google Scholar 

  36. Wang Y, Sherrard A, Zhao B, Melak M, Trautwein J, Kleinschnitz E-M, Tsopoulidis N, Fackler OT, Schwan C, Grosse R (2019) GPCR-induced calcium transients trigger nuclear actin assembly for chromatin dynamics. Nat Commun 10:5271. https://doi.org/10.1038/s41467-019-13322-y

    Article  CAS  Google Scholar 

  37. Takeuchi Y, Narumi R, Akiyama R, Vitiello E, Shirai T, Tanimura N, Kuromiya K, Ishikawa S, Kajita M, Tada M, Haraoka Y, Akieda Y, Ishitani T, Fujioka Y, Ohba Y, Yamada S, Hosokawa Y, Toyama Y, Matsui T, Fujita Y (2020) Calcium wave promotes cell extrusion. Curr Biol 30:670–681.e676. https://doi.org/10.1016/j.cub.2019.11.089

    Article  CAS  Google Scholar 

  38. Lamm KYB, Johnson ML, Baker Phillips J, Muntifering MB, James JM, Jones HN, Redline RW, Rokas A, Muglia LJ (2018) Inverted formin 2 regulates intracellular trafficking, placentation, and pregnancy outcome. eLife 7:e31150. https://doi.org/10.7554/eLife.31150

    Article  Google Scholar 

  39. Liu Z, Wei Y, Zhang L, Yee PP, Johnson M, Zhang X, Gulley M, Atkinson JM, Trebak M, Wang H-G, Li W (2019) Induction of store-operated calcium entry (SOCE) suppresses glioblastoma growth by inhibiting the Hippo pathway transcriptional coactivators YAP/TAZ. Oncogene 38:120–139. https://doi.org/10.1038/s41388-018-0425-7

    Article  CAS  Google Scholar 

  40. Zhang Z, Yu J (2018) Nurr1 exacerbates cerebral ischemia–reperfusion injury via modulating YAP-INF2-mitochondrial fission pathways. Int J Biochem Cell Biol 104:149–160. https://doi.org/10.1016/j.biocel.2018.09.014

    Article  CAS  Google Scholar 

  41. Zhao H, Pan W, Chen L, Luo Y, Xu R (2018) Nur77 promotes cerebral ischemia, Äìreperfusion injury via activating INF2-mediated mitochondrial fragmentation. J Mol Histol 49:599–613. https://doi.org/10.1007/s10735-018-9798-8

    Article  CAS  Google Scholar 

  42. Heuser VD, Mansuri N, Mogg J, Kurki S, Repo H, Kronqvist P, Carpen O, Gardberg M (2018) Formin proteins FHOD1 and INF2 in triple-negative breast cancer: association with basal markers and functional activities. Breast Cancer (Auckl) 12:1178223418792247. https://doi.org/10.1177/1178223418792247

    Article  Google Scholar 

  43. Scott RP, Quaggin SE (2015) The cell biology of renal filtration. J Cell Biol 209:199–210. https://doi.org/10.1083/jcb.201410017

    Article  CAS  Google Scholar 

  44. Welsh GI, Saleem MA (2012) The podocyte cytoskeleton-key to a functioning glomerulus in health and disease. Nat Rev Nephrol 8:14. https://doi.org/10.1038/nrneph.2011.151

    Article  CAS  Google Scholar 

  45. Schlondorff J (2015) How many Achilles' heels does a podocyte have? An update on podocyte biology. Nephrol Dial Transpl 30:1091–1097. https://doi.org/10.1093/ndt/gfu214

    Article  CAS  Google Scholar 

  46. Hermann P, Wilhelm K, Matthias K (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307. https://doi.org/10.1152/physrev.00020.2002

    Article  Google Scholar 

  47. Assady S, Wanner N, Skorecki KL, Huber TB (2017) New insights into podocyte biology in glomerular health and disease. J Am SocNephrol 28:1707. https://doi.org/10.1681/asn.2017010027

    Article  CAS  Google Scholar 

  48. Neal CR (2015) Podocytes … What's under yours? (Podocytes and foot processes and how they change in nephropathy). Front Endocrinol. https://doi.org/10.3389/fendo.2015.00009

    Article  Google Scholar 

  49. Rosenberg AZ, Kopp JB (2017) Focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 12:502–517. https://doi.org/10.2215/cjn.05960616

    Article  CAS  Google Scholar 

  50. Fogo AB (2015) Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol 11:76. https://doi.org/10.3389/fendo.2015.00009

    Article  CAS  Google Scholar 

  51. Lepori N, Zand L, Sethi S, Fernandez-Juarez G, Fervenza FC (2018) Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. Clin Kidney J 11:179–190. https://doi.org/10.1093/ckj/sfx143

    Article  CAS  Google Scholar 

  52. Brown EJ, Schlondorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, Higgs HN, Henderson JM, Pollak MR (2010) Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet 42:72–76. https://doi.org/10.1038/ng.505

    Article  CAS  Google Scholar 

  53. Barua M, Brown EJ, Charoonratana VT, Genovese G, Sun H, Pollak MR (2013) Mutations in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis. Kidney Int 83:316–322. https://doi.org/10.1038/ki.2012.349

    Article  CAS  Google Scholar 

  54. Boyer O, Benoit G, Gribouval O, Nevo F, Tete M-J, Dantal J, Gilbert-Dussardier B, Touchard G, Karras A, Presne C, Grunfeld J-P, Legendre C, Joly D, Rieu P, Mohsin N, Hannedouche T, Moal V, Gubler M-C, Broutin I, Mollet G, Antignac C (2011) Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol 22:239–245. https://doi.org/10.1681/asn.2010050518

    Article  CAS  Google Scholar 

  55. Gbadegesin RA, Lavin PJ, Hall G, Bartkowiak B, Homstad A, Jiang R, Wu G, Byrd A, Lynn K, Wolfish N, Ottati C, Stevens P, Howell D, Conlon P, Winn MP (2012) Inverted formin 2 mutations with variable expression in patients with sporadic and hereditary focal and segmental glomerulosclerosis. Kidney Int 81:94–99. https://doi.org/10.1038/ki.2011.297

    Article  CAS  Google Scholar 

  56. Rossor AM, Polke JM, Houlden H, Reilly MM (2013) Clinical implications of genetic advances in Charcot–Marie–Tooth disease. Nat Rev Neurol 9:562–571. https://doi.org/10.1038/nrneurol.2013.179

    Article  CAS  Google Scholar 

  57. Barreto LCLS, Oliveira FS, Nunes PS, de França Costa IMP, Garcez CA, Goes GM, Neves ELA, de Souza Siqueira Quintans J, de Souza Araújo AA (2016) Epidemiologic study of Charcot–Marie–Tooth disease: a systematic review. Neuroepidemiology 46:157–165. https://doi.org/10.1159/000443706

    Article  Google Scholar 

  58. Hoyle JC, Isfort MC, Roggenbuck J, Arnold WD (2015) The genetics of Charcot–Marie–Tooth disease: current trends and future implications for diagnosis and management. Appl Clin Genet 8:235–243. https://doi.org/10.2147/tacg.s69969

    Article  CAS  Google Scholar 

  59. Lemieux G, Neemeh JA (1967) Charcot–Marie–Tooth disease and nephritis. Can Med Assoc J 97:1193–1198

    CAS  Google Scholar 

  60. Paul M, Fernandez D, Pryse-Phillips W, Gault M (1990) Charcot–Marie–Tooth disease and nephropathy in a mother and daughter with a review of the literature. Nephron 54:80–85. https://doi.org/10.1159/000185814

    Article  CAS  Google Scholar 

  61. De Rechter S, De Waele L, Levtchenko E, Mekahli D (2015) Charcot–Marie–Tooth: are you testing for proteinuria? Eur J Paed Neurol 19:1–5. https://doi.org/10.1016/j.ejpn.2014.08.004

    Article  Google Scholar 

  62. Boyer O, Nevo F, Plaisier E, Funalot B, Gribouval O, Benoit G, Cong EH, Arrondel C, Tête M-J, Montjean R, Richard L, Karras A, Pouteil-Noble C, Balafrej L, Bonnardeaux A, Canaud G, Charasse C, Dantal J, Deschenes G, Deteix P, Dubourg O, Petiot P, Pouthier D, Leguern E, Guiochon-Mantel A, Broutin I, Gubler M-C, Saunier S, Ronco P, Vallat J-M, Alonso MA, Antignac C, Mollet G (2011) INF2 mutations in Charcot–Marie–Tooth disease with glomerulopathy. N Engl J Med 365:2377–2388. https://doi.org/10.1056/NEJMoa1109122

    Article  CAS  Google Scholar 

  63. Liu L, Zhang R (2014) Intermediate Charcot–Marie–Tooth disease. Neurosci Bull 30:999–1009. https://doi.org/10.1007/s12264-014-1475-7

    Article  CAS  Google Scholar 

  64. Mathis S, Bi F, Boyer O, Lacroix C, Marcorelles P, Magy L, Richard L, Antignac C, Vallat J-M (2014) Neuropathologic characterization of INF2-related Charcot–Marie–Tooth disease: evidence for a Schwann cell actinopathy. J Neuropathol Exp Neurol 73:223–233. https://doi.org/10.1097/NEN.0000000000000047

    Article  CAS  Google Scholar 

  65. Tricaud N (2018) Myelinating Schwann cell polarity and mechanically-driven myelin sheath elongation. Front Cell Neurosci. https://doi.org/10.3389/fncel.2017.00414

    Article  Google Scholar 

  66. Lynch ED, Lee MK, Morrow JE, Welcsh PL, Leon PE, King M-C (1997) Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278:1315–1318. https://doi.org/10.1126/science.278.5341.1315

    Article  CAS  Google Scholar 

  67. Schoen CJ, Emery SB, Thorne MC, Ammana HR, Sliwerska E, Arnett J, Hortsch M, Hannan F, Burmeister M, Lesperance MM (2010) Increased activity of Diaphanous homolog 3 (DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathy and Drosophila. Proc Natl Acad Sci USA 107:13396–13401. https://doi.org/10.1073/pnas.1003027107

    Article  Google Scholar 

  68. Drummond MC, Belyantseva IA, Friderici KH, Friedman TB (2012) Actin in hair cells and hearing loss. Hear Res 288:89–99. https://doi.org/10.1016/j.heares.2011.12.003

    Article  CAS  Google Scholar 

  69. Mademan I, Deconinck T, Dinopoulos A, Voit T, Schara U, Devriendt K, Meijers B, Lerut E, De Jonghe P, Baets J (2013) De novo INF2 mutations expand the genetic spectrum of hereditary neuropathy with glomerulopathy. Neurology 81:1953–1958. https://doi.org/10.1212/01.wnl.0000436615.58705.c9

    Article  CAS  Google Scholar 

  70. Roos A, Weis J, Korinthenberg R, Fehrenbach H, Hausler M, Zuchner S, Mache C, Hubmann H, Auer-Grumbach M, Senderek J (2015) Inverted formin 2-related Charcot–Marie–Tooth disease: extension of the mutational spectrum and pathological findings in Schwann cells and axons. J Peripher Nerv Syst 20:52–59. https://doi.org/10.1111/jns.12106

    Article  CAS  Google Scholar 

  71. Toyota K, Ogino D, Hayashi M, Taki M, Saito K, Abe A, Hashimoto T, Umetsu K, Tsukaguchi H, Hayasaka K (2013) INF2 mutations in Charcot–Marie–Tooth disease complicated with focal segmental glomerulosclerosis. J Peripher Nerv Syst 18:97–98. https://doi.org/10.1111/jns5.12014

    Article  CAS  Google Scholar 

  72. Rodriguez PQ, Lohkamp B, Celsi G, Mache CJ, Auer-Grumbach M, Wernerson A, Hamajima N, Tryggvason K, Patrakka J (2013) Novel INF2 mutation p. L77P in a family with glomerulopathy and Charcot–Marie–Tooth neuropathy. Ped Nephrol 28:339–343. https://doi.org/10.1007/s00467-012-2299-1

    Article  Google Scholar 

  73. Xie J, Hao X, Azeloglu EU, Ren H, Wang Z, Ma J, Liu J, Ma X, Wang W, Pan X, Zhang W, Zhong F, Li Y, Meng G, Kiryluk K, He JC, Gharavi AG, Chen N (2015) Novel mutations in the inverted formin 2 gene of Chinese families contribute to focal segmental glomerulosclerosis. Kidney Int 88:593–604. https://doi.org/10.1038/ki.2015.106

    Article  CAS  Google Scholar 

  74. Echaniz-Laguna A, Latour P (2019) A cryptic splicing mutation in the INF2 gene causing Charcot–Marie–Tooth disease with minimal glomerular dysfunction. J Peripher Nerv Sys 24:120–124. https://doi.org/10.1111/jns.12308

    Article  CAS  Google Scholar 

  75. Challis RC, Ring T, Xu Y, Wong EKS, Flossmann O, Roberts ISD, Ahmed S, Wetherall M, Salkus G, Brocklebank V, Fester J, Strain L, Wilson V, Wood KM, Marchbank KJ, Santibanez-Koref M, Goodship THJ, Kavanagh D (2017) Thrombotic microangiopathy in inverted formin 2-mediated renal dsease. J Am Soc Nephrol 28:1084–1091. https://doi.org/10.1681/asn.2015101189

    Article  CAS  Google Scholar 

  76. Caridi G, Lugani F, Dagnino M, Gigante M, Iolascon A, Falco M, Graziano C, Benetti E, Dugo M, Del Prete D, Granata A, Borracelli D, Moggia E, Quaglia M, Rinaldi R, Gesualdo L, Ghiggeri GM (2014) Novel INF2 mutations in an Italian cohort of patients with focal segmental glomerulosclerosis, renal failure and Charcot–Marie–Tooth neuropathy. Nephrol Dial Transplant 29(Suppl 4):iv80–iv86. https://doi.org/10.1093/ndt/gfu071

    Article  CAS  Google Scholar 

  77. Park HJ, Kim HJ, Hong YB, Nam SH, Chung KW, Choi BO (2014) A novel INF2 mutation in a Korean family with autosomal dominant intermediate Charcot–Marie–Tooth disease and focal segmental glomerulosclerosis. J Peripher Nerv Syst 19:175–179. https://doi.org/10.1111/jns5.12062

    Article  CAS  Google Scholar 

  78. Laurin LP, Lu M, Mottl AK, Blyth ER, Poulton CJ, Weck KE (2014) Podocyte-associated gene mutation screening in a heterogeneous cohort of patients with sporadic focal segmental glomerulosclerosis. Nephrol Dial Transplant 29:2062–2069. https://doi.org/10.1093/ndt/gft532

    Article  CAS  Google Scholar 

  79. Varner JD, Chryst-Stangl M, Esezobor CI, Solarin A, Wu G, Lane B, Hall G, Abeyagunawardena A, Matory A, Hunley TE, Lin JJ, Howell D, Gbadegesin R (2018) Genetic testing for steroid-resistant-nephrotic syndrome in an outbred population. Front Pediatr 6:307. https://doi.org/10.3389/fped.2018.00307

    Article  Google Scholar 

  80. Munch J, Grohmann M, Lindner TH, Bergmann C, Halbritter J (2016) Diagnosing FSGS without kidney biopsy—a novel INF2-mutation in a family with ESRD of unknown origin. BMC Med Genet 17:73. https://doi.org/10.1186/s12881-016-0336-9

    Article  Google Scholar 

  81. Buscher AK, Celebi N, Hoyer PF, Klein HG, Weber S, Hoefele J (2018) Mutations in INF2 may be associated with renal histology other than focal segmental glomerulosclerosis. Pediatr Nephrol 33:433–437. https://doi.org/10.1007/s00467-017-3811-4

    Article  Google Scholar 

  82. Gribouval O, Boyer O, Hummel A, Dantal J, Martinez F, Sberro-Soussan R, Etienne I, Chauveau D, Delahousse M, Lionet A, Allard J, Pouteil Noble C, Tete MJ, Heidet L, Antignac C, Servais A (2018) Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney Int 94:1013–1022. https://doi.org/10.1016/j.kint.2018.07.024

    Article  CAS  Google Scholar 

  83. Santin S, Bullich G, Tazon-Vega B, Garcia-Maset R, Gimenez I, Silva I, Ruiz P, Ballarin J, Torra R, Ars E (2011) Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 6:1139–1148. https://doi.org/10.2215/CJN.05260610

    Article  Google Scholar 

  84. Sanchez-Ares M, Garcia-Vidal M, Antucho EE, Julio P, Eduardo VM, Lens XM, Garcia-Gonzalez MA (2013) A novel mutation, outside of the candidate region for diagnosis, in the inverted formin 2 gene can cause focal segmental glomerulosclerosis. Kidney Int 83:153–159. https://doi.org/10.1038/ki.2012.325

    Article  CAS  Google Scholar 

  85. Weber S, Buscher AK, Hagmann H, Liebau MC, Heberle C, Ludwig M, Rath S, Alberer M, Beissert A, Zenker M, Hoyer PF, Konrad M, Klein HG, Hoefele J (2016) Dealing with the incidental finding of secondary variants by the example of SRNS patients undergoing targeted next-generation sequencing. Pediatr Nephrol 31:73–81. https://doi.org/10.1007/s00467-015-3167-6

    Article  Google Scholar 

  86. Dohrn MF, Glockle N, Mulahasanovic L, Heller C, Mohr J, Bauer C, Riesch E, Becker A, Battke F, Hortnagel K, Hornemann T, Suriyanarayanan S, Blankenburg M, Schulz JB, Claeys KG, Gess B, Katona I, Ferbert A, Vittore D, Grimm A, Wolking S, Schols L, Lerche H, Korenke GC, Fischer D, Schrank B, Kotzaeridou U, Kurlemann G, Drager B, Schirmacher A, Young P, Schlotter-Weigel B, Biskup S (2017) Frequent genes in rare diseases: panel-based next generation sequencing to disclose causal mutations in hereditary neuropathies. J Neurochem 143:507–522. https://doi.org/10.1111/jnc.14217

    Article  CAS  Google Scholar 

  87. Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, Engelmann S, Vega-Warner V, Fang H, Halbritter J, Somers MJ, Tan W, Shril S, Is F, Lifton RP, Bockenhauer D, El-Desoky S, Kari JA, Zenker M, Kemper MJ, Mueller D, Fathy HM, Soliman NA, Group SS, Hildebrandt F (2015) A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 26:1279–1289. https://doi.org/10.1681/asn.2014050489

    Article  CAS  Google Scholar 

  88. Jin S, Wang W, Wang R, Lv H, Zhang W, Wang Z, Jiao J, Yuan Y (2015) INF2 mutations associated with dominant inherited intermediate Charcot–Marie–Tooth neuropathy with focal segmental glomerulosclerosis in two Chinese patients. Clin Neuropathol 34:275–281. https://doi.org/10.5414/NP300835

    Article  Google Scholar 

  89. Rood IM, Bongers EM, Lugtenberg D, Klein IH, Steenbergen EJ, Wetzels JF, Deegens JK (2016) Familial focal segmental glomerulosclerosis: mutation in inverted formin 2 mimicking Alport syndrome. Neth J Med 74:82–85

    CAS  Google Scholar 

  90. Tan W, Lovric S, Ashraf S, Rao J, Schapiro D, Airik M, Shril S, Gee HY, Baum M, Daouk G, Ferguson MA, Rodig N, Somers MJG, Stein DR, Vivante A, Warejko JK, Widmeier E, Hildebrandt F (2018) Analysis of 24 genes reveals a monogenic cause in 11. 1% of cases with steroid-resistant nephrotic syndrome at a single center. Pediatr Nephrol. https://doi.org/10.1007/s00467-017-3801-6

    Article  Google Scholar 

  91. Ogino D, Hashimoto T, Hattori M, Sugawara N, Akioka Y, Tamiya G, Makino S, Toyota K, Mitsui T, Hayasaka K (2016) Analysis of the genes responsible for steroid-resistant nephrotic syndrome and/or focal segmental glomerulosclerosis in Japanese patients by whole-exome sequencing analysis. J Hum Genet 61:137–141. https://doi.org/10.1038/jhg.2015.122

    Article  CAS  Google Scholar 

  92. Shang S, Peng F, Wang T, Wu X, Li P, Li Q, Chen XM (2019) Genotype-phenotype correlation and prognostic impact in chinese patients with Alport syndrome. Mol Genet Genom Med 7:e00741–e00741. https://doi.org/10.1002/mgg3.741

    Article  CAS  Google Scholar 

  93. Safarikova M, Stekrova J, Honsova E, Horinova V, Tesar V, Reiterova J (2018) Mutational screening of inverted formin 2 in adult-onset focal segmental glomerulosclerosis or minimal change patients from the Czech Republic. BMC Med Genet 19:147. https://doi.org/10.1186/s12881-018-0667-9

    Article  CAS  Google Scholar 

  94. Gast C, Pengelly RJ, Lyon M, Bunyan DJ, Seaby EG, Graham N, Venkat-Raman G, Ennis S (2016) Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol Dial Transplant 31:961–970. https://doi.org/10.1093/ndt/gfv325

    Article  CAS  Google Scholar 

  95. Lee HK, Han KH, Jung YH, Kang HG, Moon KC, Ha IS, Choi Y, Cheong HI (2011) Variable renal phenotype in a family with an INF2 mutation. Pediatr Nephrol 26:73–76. https://doi.org/10.1007/s00467-010-1644-5

    Article  Google Scholar 

  96. Lipska BS, Iatropoulos P, Maranta R, Caridi G, Ozaltin F, Anarat A, Balat A, Gellermann J, Trautmann A, Erdogan O, Saeed B, Emre S, Bogdanovic R, Azocar M, Balasz-Chmielewska I, Benetti E, Caliskan S, Mir S, Melk A, Ertan P, Baskin E, Jardim H, Davitaia T, Wasilewska A, Drozdz D, Szczepanska M, Jankauskiene A, Higuita LM, Ardissino G, Ozkaya O, Kuzma-Mroczkowska E, Soylemezoglu O, Ranchin B, Medynska A, Tkaczyk M, Peco-Antic A, Akil I, Jarmolinski T, Firszt-Adamczyk A, Dusek J, Simonetti GD, Gok F, Gheissari A, Emma F, Krmar RT, Fischbach M, Printza N, Simkova E, Mele C, Ghiggeri GM, Schaefer F (2013) Genetic screening in adolescents with steroid-resistant nephrotic syndrome. Kidney Int 84:206–213. https://doi.org/10.1038/ki.2013.93

    Article  CAS  Google Scholar 

  97. Bullich G, Trujillano D, Santin S, Ossowski S, Mendizabal S, Fraga G, Madrid A, Ariceta G, Ballarin J, Torra R, Estivill X, Ars E (2015) Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity. Eur J Human Genet 23:1192–1199. https://doi.org/10.1038/ejhg.2014.252

    Article  CAS  Google Scholar 

  98. Yao T, Udwan K, John R, Rana A, Haghighi A, Xu L, Hack S, Reich HN, Hladunewich MA, Cattran DC, Paterson AD, Pei Y, Barua M (2019) Integration of genetic testing and pathology for the diagnosis of adults with FSGS. Clin J Am Soc Nephrol 14:213. https://doi.org/10.2215/cjn.08750718

    Article  CAS  Google Scholar 

  99. Wang M, Chun J, Genovese G, Knob AU, Benjamin A, Wilkins MS, Friedman DJ, Appel GB, Lifton RP, Mane S, Pollak MR (2019) Contributions of rare gene variants to familial and sporadic FSGS. J Am Soc Nephrol 30:1625. https://doi.org/10.1681/asn.2019020152

    Article  CAS  Google Scholar 

  100. Fu J, Ma M, Pang M, Yang L, Li G, Song J, Zhang J (2019) Analysis of a pedigree with autosomal dominant intermediate Charcot–Marie–Tooth disease type E and nephropathy. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 36:918–921. https://doi.org/10.3760/cma.j.issn.1003-9406.2019.09.016

    Article  Google Scholar 

  101. Nagano C, Yamamura T, Horinouchi T, Aoto Y, Ishiko S, Sakakibara N, Shima Y, Nakanishi K, Nagase H, Iijima K, Nozu K (2020) Comprehensive genetic diagnosis of Japanese patients with severe proteinuria. Sci Rep 10:270. https://doi.org/10.1038/s41598-019-57149-5

    Article  CAS  Google Scholar 

  102. Larsen CP, Durfee T, Wilson JD, Beggs ML (2016) A custom targeted next-generation sequencing gene panel for the diagnosis of genetic nephropathies. Am J Kidney Dis 67:992–993. https://doi.org/10.1053/j.ajkd.2015.11.023

    Article  Google Scholar 

  103. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN (2017) The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136:665–677. https://doi.org/10.1007/s00439-017-1779-6

    Article  CAS  Google Scholar 

  104. Snoek R, Nguyen TQ, van der Zwaag B, van Zuilen AD, Kruis HME, van Gils-Verrij LA, Goldschmeding R, Knoers NVAM, Rookmaaker MB, van Eerde AM (2019) Importance of genetic diagnostics in adult-onset focal segmental glomerulosclerosis. Nephron 142:351–358. https://doi.org/10.1159/000499937

    Article  CAS  Google Scholar 

  105. Nozu K, Nakanishi K, Abe Y, Udagawa T, Okada S, Okamoto T, Kaito H, Kanemoto K, Kobayashi A, Tanaka E, Tanaka K, Hama T, Fujimaru R, Miwa S, Yamamura T, Yamamura N, Horinouchi T, Minamikawa S, Nagata M, Iijima K (2019) A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol 23:158–168. https://doi.org/10.1007/s10157-018-1629-4

    Article  Google Scholar 

  106. Kashtan C (2017) Alport syndrome: facts and opinions. F1000Research 6:50. https://doi.org/10.12688/f1000research.9636.1

    Article  CAS  Google Scholar 

  107. Barisoni L, Schnaper HW, Kopp JB (2007) A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin J Am Soc Nephrol 2:529–542. https://doi.org/10.2215/cjn.04121206

    Article  Google Scholar 

  108. Kavanagh D, Goodship TH, Richards A (2013) Atypical hemolytic uremic syndrome. Sem Nephrol 33:508–530. https://doi.org/10.1016/j.semnephrol.2013.08.003

    Article  CAS  Google Scholar 

  109. Petukh M, Kucukkal TG, Alexov E (2015) On human disease-causing amino acid variants: statistical study of sequence and structural patterns. Hum Mutat 36:524–534. https://doi.org/10.1002/humu.22770

    Article  CAS  Google Scholar 

  110. Peifer M, Berg S, Reynolds AB (1994) A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76:789–791. https://doi.org/10.1016/0092-8674(94)90353-0

    Article  CAS  Google Scholar 

  111. Tewari R, Bailes E, Bunting KA, Coates JC (2010) Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 20:470–481. https://doi.org/10.1016/j.tcb.2010.05.003

    Article  CAS  Google Scholar 

  112. Otomo T, Otomo C, Tomchick DR, Machius M, Rosen MK (2005) Structural basis of Rho GTPase-mediated activation of the formin mDia1. Mol Cell 18:273–281. https://doi.org/10.1016/j.molcel.2005.04.002

    Article  CAS  Google Scholar 

  113. Lammers M, Rose R, Scrima A, Wittinghofer A (2005) The regulation of mDia1 by autoinhibition and its release by Rho-GTP. EMBO J 24:4176–4187. https://doi.org/10.1038/sj.emboj.7600879

    Article  CAS  Google Scholar 

  114. Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghofer A (2005) Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435:513–518. https://doi.org/10.1038/nature03604

    Article  CAS  Google Scholar 

  115. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Prot 4:363–371. https://doi.org/10.1038/nprot.2009.2

    Article  CAS  Google Scholar 

  116. Gul IS, Hulpiau P, Saeys Y, van Roy F (2017) Metazoan evolution of the armadillo repeat superfamily. Cell Mol Life Sci 74:525–541. https://doi.org/10.1007/s00018-016-2319-6

    Article  CAS  Google Scholar 

  117. Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucl Acids Res 40:W452–W457. https://doi.org/10.1093/nar/gks539

    Article  CAS  Google Scholar 

  118. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747. https://doi.org/10.1093/bioinformatics/btv195

    Article  CAS  Google Scholar 

  119. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. https://doi.org/10.1038/nmeth0410-248

    Article  CAS  Google Scholar 

  120. Kellogg EH, Leaver-Fay A, Baker D (2011) Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79:830–838. https://doi.org/10.1002/prot.22921

    Article  CAS  Google Scholar 

  121. Buscher AK, Beck BB, Melk A, Hoefele J, Kranz B, Bamborschke D, Baig S, Lange-Sperandio B, Jungraithmayr T, Weber LT, Kemper MJ, Tonshoff B, Hoyer PF, Konrad M, Weber S (2016) Rapid response to cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 11:245–253. https://doi.org/10.2215/CJN.07370715

    Article  CAS  Google Scholar 

  122. McCarthy HJ, Bierzynska A, Wherlock M, Ognjanovic M, Kerecuk L, Hegde S, Feather S, Gilbert RD, Krischock L, Jones C, Sinha MD, Webb NJ, Christian M, Williams MM, Marks S, Koziell A, Welsh GI, Saleem MA, Group RUSS (2013) Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 8:637–648. https://doi.org/10.2215/CJN.07200712

    Article  CAS  Google Scholar 

  123. Pehlivan D, Beck CR, Okamoto Y, Harel T, Akdemir ZHC, Jhangiani SN, Withers MA, Goksungur MT, Carvalho CMB, Czesnik D, Gonzaga-Jauregui C, Wiszniewski W, Muzny DM, Gibbs RA, Rautenstrauss B, Sereda MW, Lupski JR (2016) The role of combined SNV and CNV burden in patients with distal symmetric polyneuropathy. Genet Med 18:443–451. https://doi.org/10.1038/gim.2015.124

    Article  Google Scholar 

  124. Sun H, Schlondorff JS, Brown EJ, Higgs HN, Pollak MR (2011) Rho activation of mDia formins is modulated by an interaction with inverted formin 2 (INF2). Proc Natl Acad Sci USA 108:2933–2938. https://doi.org/10.1073/pnas.1017010108

    Article  Google Scholar 

  125. Rollason R, Wherlock M, Heath JA, Heesom KJ, Saleem MA, Welsh GI (2016) Disease causing mutations in inverted formin 2 regulate its binding to G-actin, F-actin capping protein (CapZ alpha-1) and profilin 2. Biosci Rep 36:e00302–e00302. https://doi.org/10.1042/bsr20150252

    Article  Google Scholar 

  126. Sun H, Schlondorff J, Higgs HN, Pollak MR (2013) Inverted formin 2 regulates actin dynamics by antagonizing Rho/diaphanous-related formin signaling. J Am Soc Nephrol 24:917–929. https://doi.org/10.1681/asn.2012080834

    Article  CAS  Google Scholar 

  127. Sun H, Al-Romaih K, MacRae CA, Pollak MR (2014) Human kidney disease-causing INF2 mutations perturb Rho/Dia signaling in the glomerulus. EBioMedicine 1:107–115. https://doi.org/10.1016/j.ebiom.2014.11.009

    Article  Google Scholar 

  128. Zhu L, Jiang R, Aoudjit L, Jones N, Takano T (2011) Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. J Am Soc Nephrol 22:1621–1630. https://doi.org/10.1681/asn.2010111146

    Article  CAS  Google Scholar 

  129. Subramanian B, Sun H, Yan P, Charoonratana VT, Higgs HN, Wang F, Lai K-MV, Valenzuela DM, Brown EJ, Schlöndorff JS, Pollak MR (2016) Mice with mutant Inf2 show impaired podocyte and slit diaphragm integrity in response to protamine-induced kidney injury. Kidney Int 90:363–372. https://doi.org/10.1016/j.kint.2016.04.020

    Article  CAS  Google Scholar 

  130. Subramanian B, Chun J, Perez-Gill C, Yan P, Stillman IE, Higgs HN, Alper SL, Schlöndorff JS, Pollak MR (2020) FSGS-causing INF2 mutation impairs cleaved INF2 N-fragment functions in podocytes. J Am Soc Nephrol 31:374–391. https://doi.org/10.1681/asn.2019050443

    Article  CAS  Google Scholar 

  131. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529. https://doi.org/10.1038/nrm1155

    Article  CAS  Google Scholar 

  132. Carafoli E, Krebs J (2016) Why calcium? How calcium became the best communicator. J Biol Chem 291:20849–20857. https://doi.org/10.1074/jbc.R116.735894

    Article  CAS  Google Scholar 

  133. Berridge MJ (2005) Unlocking the secrets of cell signaling. Annu Rev Physiol 67:1–21. https://doi.org/10.1146/annurev.physiol.67.040103.152647

    Article  CAS  Google Scholar 

  134. Berridge MJ (2012) Calcium signalling remodelling and disease. Biochem Soc Trans 40:297–309. https://doi.org/10.1042/BST20110766

    Article  CAS  Google Scholar 

  135. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058. https://doi.org/10.1016/j.cell.2007.11.028

    Article  CAS  Google Scholar 

  136. Marazuela M, Acevedo A, Adrados M, Garcia-Lopez MA, Alonso MA (2003) Expression of MAL, an integral protein component of the machinery for raft-mediated pical transport, in human epithelia. J Histochem Cytochem 51:665–673. https://doi.org/10.1177/002215540305100512

    Article  CAS  Google Scholar 

  137. Marazuela M, Acevedo A, Garcia-Lopez MA, Adrados M, de Marco MC, Alonso MA (2004) Expression of MAL2, an integral protein component of the machinery for basolateral-to-apical transcytosis, in human epithelia. J Histochem Cytochem 52:243–252. https://doi.org/10.1177/002215540405200212

    Article  CAS  Google Scholar 

  138. Shaye DD, Greenwald I (2015) The disease-associated formin INF2/EXC-6 organizes lumen and cell outgrowth during tubulogenesis by regulating F-actin and microtubule cytoskeletons. Dev Cell 32:743–755. https://doi.org/10.1016/j.devcel.2015.01.009

    Article  CAS  Google Scholar 

  139. Shaye DD, Greenwald I (2016) A network of conserved formins, regulated by the guanine exchange factor EXC-5 and the GTPase CDC-42, modulates tubologenesis in vivo. Development 143:4173–4181. https://doi.org/10.1242/dev.141861

    Article  CAS  Google Scholar 

  140. Weavers H, Prieto-Sanchez S, Grawe F, Garcia-Lopez A, Artero R, Wilsch-Bräuninger M, Ruiz-Gomez M, Skaer H, Denholm B (2009) The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457:322–326. https://doi.org/10.1038/nature07526

    Article  CAS  Google Scholar 

  141. Carrasco-Rando M, Prieto-Sanchez S, Culi J, Tutor AS, Ruiz-Gomez M (2019) A specific isoform of Pyd/ZO-1 mediates junctional remodeling and formation of slit diaphragms. J Cell Biol 218:2294–2308. https://doi.org/10.1083/jcb.201810171

    Article  CAS  Google Scholar 

  142. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera- visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  Google Scholar 

  143. Shapovalov MV, Dunbrack RL Jr (2011) A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19:844–858. https://doi.org/10.1016/j.str.2011.03.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Phil Mason for revising the English language of the manuscript. We thank Cyrus Biotechnology Inc. for a free trial of the Cyrys Bench® software. Research in the laboratory of MAA is supported by a Grant (PGC2018-095643-B-I00) from the Ministerio de Ciencia e Innovación, Fondo Europeo de Desarrollo Regional y Agencia Estatal de Investigación. A contract (FPU16/00935) from the Ministerio de Ciencia e Innovación to LL-d-H is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Alonso.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labat-de-Hoz, L., Alonso, M.A. The formin INF2 in disease: progress from 10 years of research. Cell. Mol. Life Sci. 77, 4581–4600 (2020). https://doi.org/10.1007/s00018-020-03550-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03550-7

Keywords

Navigation