Skip to main content

Advertisement

Log in

Depositional environments of limestones from the Taiyuan Formation in the North China Block interpreted from REE proxies

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The predominantly calcareous Taiyuan Formation was formed during the Late Paleozoic period in the southern part of the North China block in the eastern Palaeotethys. We present the rare earth elements (REE) and petrography data from nine limestone beds in the Zhangji mine of the Huainan coalfield as proxies to interpret the depositional environment of Taiyuan Formation. Thin-section petrography indicates that the limestones are mainly bioclastic, in-situ and are characterized by matrix-supported cementation. The REE concentrations and elemental patterns in the limestones reflect deposition in a normal marine environment. The REE analyses show the depletion of light rare earth elements, positive La anomalies, and negative Gd anomalies. Moderately negative δCe anomalies indicate that the limestones are most likely formed in an oxidized setting, typically a shallow marine environment. The positive Eu anomaly suggests deposition in a coastal environment with influx of clastics and terrestrial organic matter, thus indicating a more southerly provenance. Results from this study highlight the utility of REE and trace-element analyses of carbonate rocks for the reconstruction of depositional environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alibo DS, Nozaki Y (1999) Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta 63:363–372

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal supergroup, South Africa. Precambr Res 79:37–55

    Article  Google Scholar 

  • Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ (2004) Characterization of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett 222:43–60. https://doi.org/10.1016/j.epsl.2004.02.016

    Article  Google Scholar 

  • Chang X, Wang T-G, Li Q, Ou G (2013) Charging of Ordovician of reservoirs in the Halahatang depression (Tarim Basin, NW China) determined by oil geochemistry. J Pet Geol 36:383–398. https://doi.org/10.1111/jpg.12562

    Article  Google Scholar 

  • Chang X, Wang G, Guo H, Cui J, Wang T (2016) A case study of crude oil alteration in a clastic reservoir by waterflooding. J Petrol Sci Eng 146:380–391. https://doi.org/10.1016/j.petrol.2016.05.044

    Article  Google Scholar 

  • Chen S, Gui H, Sun L, Liu X (2011) Rare earth element fractionation groundwater and wall rock in limestone aquifer: sample from Taiyuan formation limestone aquifer in Renlou coal mine, North Anhui Province. Geoscience 25:802–818

    Google Scholar 

  • Chen J, Montañez IP, Qi Y, Shen S, Wang X (2018a) Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology 46:395–398. https://doi.org/10.1130/g40093.1

    Article  Google Scholar 

  • Chen J, Sheng Q, Hu K, Yao L, Lin W, Montañez IP, Tian X, Qi Y, Wang X (2018b) Late Mississippian glacio-eustasy recorded in the eastern Paleo-Tethys Ocean (South China). Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2018.07.021

    Article  Google Scholar 

  • ElderfieldJ H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Article  Google Scholar 

  • Frimmel HE (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol 258:338–353. https://doi.org/10.1016/j.chemgeo.2008.10.033

    Article  Google Scholar 

  • Gao W, Shi L, Han J, Zhai P (2018) Dynamic monitoring of water in a working face floor using 2D electrical resistivity tomography (ERT). Mine Water Environ 37:423–430

    Article  Google Scholar 

  • Golonka J, Ford D (2000) Pangean (Late Carboniferous-Middle Jurassic) paleoenvironment and lithofacies. Palaeogeogr Palaeoclimatol Palaeoecol 161:1–34. https://doi.org/10.1016/S0031-0182(00)00115-2

    Article  Google Scholar 

  • Han S (1990) Geological conditions and coal prediction in Lianghuai areas. Geological Publishing House, Beijing

    Google Scholar 

  • Han Z, Meng R, Yan H, Zhao H, Han M, Zhao Y, Sun B, Sun Y, Wang J, Zhuang D, Li W, Lu L (2017a) Calcium carbonate precipitation by Synechocystis sp. PCC6803 at different Mg/Ca molar ratios under the laboratory condition. Carbonate Evaporite 32:561–575. https://doi.org/10.1007/s13146-016-0322-5

    Article  Google Scholar 

  • Han Z, Zhuang D, Yan H, Zhao H, Sun B, Li D, Sun Y, Hu W, Xuan Q, Chen J, Xiu Y (2017b) Thermogravimetric and kinetic analysis of thermal decomposition characteristics of microbial calcites induced by cyanobacteria Synechocystis sp. PCC6803. J Therm Anal Calorim 127:1371–1379. https://doi.org/10.1007/s10973-016-6026-1

    Article  Google Scholar 

  • Han Z, Wang J, Zhao H, Tucker ME, Zhao Y, Wu G, Zhou J, Yin J, Zhang H, Zhang X (2019) Mechanism of biomineralization induced by Bacillus subtilis J2 and characteristics of the biominerals. Minerals 9:218

    Article  Google Scholar 

  • Henderson P (1984) General geochemical properties and abundances of the rare earth elements. In: Henderson P (ed) Developments in geochemistry. Elsevier, Amsterdam, pp 1–32

    Google Scholar 

  • Holser WT (1997) Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeogr Palaeoclimatol Palaeoecol 132:309–323. https://doi.org/10.1016/S0031-0182(97)00069-2

    Article  Google Scholar 

  • Hoyle J, Elderfield H, Gledhill A, Greaves M (1984) The behaviour of the rare-earth elements during the mixing of river and sea waters. Gachim Cosmochim Acta 48:143–149

    Article  Google Scholar 

  • Kamber BS, Webb GE (2001) The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim Cosmochim Acta 65:2509–2525. https://doi.org/10.1016/S0016-7037(01)00613-5

    Article  Google Scholar 

  • Komiya T, Hirata T, Kitajima K, Yamamoto S, Shibuya T, Sawaki Y, Ishikawa T, Shu D, Li Y, Han J (2008) Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Res 14:159–174. https://doi.org/10.1016/j.gr.2007.10.006

    Article  Google Scholar 

  • Lan Y (1982) Sedimentary characteristics and forming environment of Taiyuan formation in Huainan coalfield. Coalf Geol Explor, pp. 12–15.

  • Li Z, Wang D, Lv D, Li Y, Liu H, Wang P, Liu Y, Liu J, Li D (2018) The geologic settings of Chinese coal deposits. Int Geol Rev 60:548–578. https://doi.org/10.1080/00206814.2017.1324327

    Article  Google Scholar 

  • Liu HB, Wang BQ (1996) Geochemical characteristics of paleokarstification of Ordovician Majiagou carbonates in Xingxian and Liulin, Shanxi, China. Carbonate Evaporite 11:77–84. https://doi.org/10.1007/Bf03175787

    Article  Google Scholar 

  • Lv D, Chen J, Li Z, Zheng G, Song C, Liu H, Meng Y, Wang D (2014) Controlling factors, accumulation model and target zone prediction of the coal-bed methane in the Huanghebei coalfield, North China. Res Geol 64:332–345. https://doi.org/10.1111/rge.12044

    Article  Google Scholar 

  • Lv D, Zong R, Li Z, Wang D, Liu H, Wu X, Wang X, Yu D, Feng T, Zhao L, Yang Q, Yong P (2016) Oil shale paleo-productivity disturbed by sea water in a coal and oil shale bearing succession: a case study from the Paleogene Huangxian basin of Eastern China. J Petrol Sci Eng 139:62–70. https://doi.org/10.1016/j.petrol.2015.12.014

    Article  Google Scholar 

  • Lv D, Wang D, Li Z, Liu H, Li Y (2017) Depositional environment, sequence stratigraphy and sedimentary mineralization mechanism in the coal bed- and oil shale-bearing succession: a case from the Paleogene Huangxian Basin of China. J Petrol Sci Eng 148:32–51. https://doi.org/10.1016/j.petrol.2016.09.028

    Article  Google Scholar 

  • Nothdurft LD, Webb GE, Kamber BS (2004) Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim Acta 68:263–283. https://doi.org/10.1016/S0016-7037(03)00422-8

    Article  Google Scholar 

  • Nozaki Y, Zhang J, Amakawa H (1997) The fractionation between Y and Ho in the marine environment. Earth Planet Sci Lett 148:329–340

    Article  Google Scholar 

  • Piper DZ (1974) Rare earth elements in the sedimentary cycle: a summary. Chem Geol 14:285–304. https://doi.org/10.1016/0009-2541(74)90066-7

    Article  Google Scholar 

  • Shen SZ, Zhang H, Shang QH, Li WZ (2006) Permian stratigraphy and correlation of Northeast China: a review. J Asian Earth Sci 26:304–326. https://doi.org/10.1016/j.jseaes.2005.07.007

    Article  Google Scholar 

  • Sun R, Liu G, Zheng L, Chou C-L (2010) Characteristics of coal quality and their relationship with coal-forming environment: a case study from the Zhuji exploration area, Huainan coalfield, Anhui, China. Energy 35:423–435

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publishing, Palo Alto

    Google Scholar 

  • Taylor Stuart R, McLennan SM, Armstrong RL, Tarney J, Moorbath Stephen E, Windley BF (1981) The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philos Trans R Soc Lond Ser A Math Phys Sci 301:381–399. https://doi.org/10.1098/rsta.1981.0119

    Article  Google Scholar 

  • Van Kranendonk MJ, Webb GE, Kamber BS (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology 1:91–108. https://doi.org/10.1046/j.1472-4669.2003.00014.x

    Article  Google Scholar 

  • Wan Y, Wang J, Fang W, Fu X, Wang Z, Shen L (2017) Characteristics and indications of rare earth elements in carbonates in the Buqu formation, southern Qiangtang Basin. Petrol Geol Exp 39:655–665

    Google Scholar 

  • Wang YL, Liu YG, Schmitt RA (1986) Rare earth element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at ~54 My. Geochim Cosmochim Acta 50:1337–1355. https://doi.org/10.1016/0016-7037(86)90310-8

    Article  Google Scholar 

  • Wang L, Fu Y, Fang S (2018) Elemental geochemical characteristics and geological significance of Majiagou formation, eastern Ordos Basin. Petrol Geol Exp 40:344–349

    Google Scholar 

  • Wu F, Chen Z, Zhang SL, Ge L (1995) Transgressions during Permo-Carboniferousperiod in North China. Geoscience 9:284–292 (in Chinese with English abstract)

    Google Scholar 

  • Wu B, Wu D, Wan Z, Liu G, Sun R (2013) Geochemical characteristics of REE in limestone of the Taiyuan formation, Paner coalmine and their constrationt on depositional environment. J Univ Sci Technol China 43:355–362

    Google Scholar 

  • Yan J, Xu S, Li F (1998) Geochemical characteristics of the anoxic sedimentary environment in Qixia formation, Badong, Hubei Province. Lithofacies Paleogeogr, pp. 29–34.

  • Yao X, Zhou Y, Li S (2013) Sedimentary environments and geochemical characteristics of early Permian carbonate platform in the Western Henan Province. Geoscience 27:1340–1347

    Google Scholar 

  • Yin H, Sang S, Xie D, Zhao H, Li S, Li H, Zhuang X (2019) A numerical simulation technique to study fault activation characteristics during mining between fault bundles. Environ Earth Sci 78:148. https://doi.org/10.1007/s12665-019-8142-2

    Article  Google Scholar 

  • Zhang J (2016) Geochemical characteristics of Middle-Ordovician series carbonatite and restoration of Paleoenvironment in West Weibei. J Chongqing Univ Sci Technol (Nat Sci Ed) 18:8–11. https://doi.org/10.19406/j.cnki.cqkjxyxbzkb.2016.01.003

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key R&D Plan of China (Grant No. 2017YFC0601405), the National Natural Science Foundation of China (41772096, 41972170), Shandong Province Key Research and Development Plan (2019GGX103021), Youth Innovation Team Development Plan of Universities in Shandong Province, and SDUST Research Fund (No. 2018TDJH101). We also thank Dun Wu for constructive advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dawei Lv or Dun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, D., Fan, W., Ejembi, J.I. et al. Depositional environments of limestones from the Taiyuan Formation in the North China Block interpreted from REE proxies. Carbonates Evaporites 35, 61 (2020). https://doi.org/10.1007/s13146-020-00580-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00580-x

Keywords

Navigation