Skip to main content
Log in

Parameter Sensitivity Analysis of the WRF-Hydro Modeling System for Streamflow Simulation: a Case Study in Semi-Humid and Semi-Arid Catchments of Northern China

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The WRF model is nowadays the most widely applied mesoscale numerical weather prediction model. Its land-surface hydrological modeling module, WRF-Hydro, which is designed to facilitate the land-surface modeling being coupled with WRF, draws more and more attentions from both the meteorological and the hydrological community. In this study, four sensitive and principle parameters of WRF-Hydro are tested in semi-humid and semi-arid areas of northern China. These parameters include the runoff infiltration parameter (REFKDT), the surface retention depth (RETDEPRT) controlled by a scaling parameter named RETDEPRTFAC, the channel Manning roughness parameter (MannN), and the overland flow roughness parameter (OVROUGHRT) controlled by the scaling parameter OVROUGHRTFAC. WRF-Hydro is designed with a 100-m horizontal grid spacing in two catchments of northern China. The performance of WRF-Hydro with different parameterisation combination schemes is tested for simulating a typical 24-h storm events with uniform rainfall evenness in space and time. The Nash-Sutcliffe efficiency and the root mean squared error of the simulated streamflow, together with the cumulative amount of the simulated rainfall is chosen as the evaluation statistics. It is found that REFKDT and MannN are the most sensitive parameter among the four parameters, and the case is especially evident with unsaturated soil conditions. In order to obtain the most reasonable value range, REFKDT and MannN are further verified by another three 24-h storm events with different spatial and temporal evenness. The range of REFKDT from 2.0 to 3.0, and the MannN scale factor from 1.5 to 1.8 is found to give the best results. The findings of this study can be used as references for calibration of the WRF-Hydro modeling system in semi-humid and semi-arid regions with similar rainfall-runoff response characteristics. The methodologies to design and test the combination schemes of parameterisations can also be regarded as a reference for evaluation of the WRF/WRF-Hydro coupled system for land-surface process modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aligo, E.A., Gallus, W.A., Segal, M.: On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts. Weather Forecast. 24(2), 575–594 (2009)

    Article  Google Scholar 

  • Arnault, J., et al.: Role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks: a case study with the WRF-hydro coupled modeling system for West Africa. J. Hydrometeorol. 17(5), 1489–1516 (2015)

    Article  Google Scholar 

  • Cardoso, R.M., Soares, P.M.M., Miranda, P.M.A., Belo-Pereira, M.: WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int. J. Climatol. 33(11), 2591–2608 (2013)

    Article  Google Scholar 

  • Chambon, P., Zhang, S.Q., Hou, A.Y., Zupanski, M., Cheung, S.: Assessing the impact of pre-GPM microwave precipitation observations in the Goddard WRF ensemble data assimilation system. Q. J. R. Meteorol. Soc. 140(681), 1219–1235 (2014)

    Article  Google Scholar 

  • Chen, F., Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 129(4), 569–585 (2001)

    Article  Google Scholar 

  • Dasari, H.P., Salgado, R.: Numerical modelling of heavy rainfall event over Madeira Island in Portugal: sensitivity to different micro physical processes. Meteorol. Appl. 22(1), 113–127 (2015)

    Article  Google Scholar 

  • Doherty, J.: PEST: Model Independent Parameter Estimation, User Manual, 4th ed. Watermark Numer. Comput., Brisbane, Queensland, Australia. (2002). https://www.epa.gov/sites/production/files/documents/PESTMAN.PDF. Accessed Feb 2019

  • Dudhia, J.: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46(20), 3077–3107 (1989)

    Article  Google Scholar 

  • Fiori, E., Comellas, A., Molini, L., Rebora, N., Siccardi, F., Gochis, D.J., Tanelli, S., Parodi, A.: Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: the Genoa 2011 case. Atmos. Res. 138, 13–29 (2014)

    Article  Google Scholar 

  • Givati, A., Lynn, B., Liu, Y., Rimmer, A.: Using the WRF model in an operational Streamflow forecast system for the Jordan River. J. Appl. Meteorol. Climatol. 51(2), 285–299 (2012)

    Article  Google Scholar 

  • Gochis, D., Yu, W., Yates, D.: The WRF-Hydro model technical description and user’s guide, version 3.0. NCAR Technical Document. 120pp. (2015). http://www.ral.ucar.edu/projects/wrf_hydro/. Accessed Feb 2019

  • Hong, S.-Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134(9), 2318–2341 (2006)

    Article  Google Scholar 

  • Jarvis, D., Stoeckl, N., Chaiechi, T.: Applying econometric techniques to hydrological problems in a large basin: quantifying the rainfall–discharge relationship in the Burdekin, Queensland, Australia. J. Hydrol. 496, 107–121 (2013)

    Article  Google Scholar 

  • Kain, J.S.: The Kain–Fritsch convective parameterization: an update. J. Appl. Meteorol. 43(1), 170–181 (2004)

    Article  Google Scholar 

  • Kerandi, N., et al.: Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin. Theor. Appl. Climatol. 131(3–4), 1337–1355 (2017)

    Google Scholar 

  • Kim, J.-H., Shin, D.-B., Kummerow, C.: Impacts of a priori databases using six WRF microphysics schemes on passive microwave rainfall retrievals. J. Atmos. Ocean. Technol. 30(10), 2367–2381 (2013)

    Article  Google Scholar 

  • Lahmers, T.M., Gupta, H., Castro, C.L., Gochis, D.J., Yates, D., Dugger, A., Goodrich, D., Hazenberg, P.: Enhancing the structure of the WRF-hydro hydrologic model for semi-arid environments. J. Hydrometeorol. 20, 691–714 (2019)

    Article  Google Scholar 

  • Lin, Y.-L., Farley, R.D., Orville, H.D.: Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 22(6), 1065–1092 (1983)

    Article  Google Scholar 

  • Liu, J., Bray, M., Han, D.: Exploring the effect of data assimilation by WRF-3DVar for numerical rainfall prediction with different types of storm events. Hydrol. Process. 27(25), 3627–3640 (2012)

    Article  Google Scholar 

  • Liu, J., Wang, J., Pan, S., Tang, K., Li, C., Han, D.: A real-time flood forecasting system with dual updating of the NWP rainfall and the river flow. Nat. Hazards Earth Syst. Sci. 77(2), 1161–1182 (2015)

    Google Scholar 

  • Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 102(D14), 16663–16682 (1997)

    Article  Google Scholar 

  • Moriasi, D.N., et al.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE. 50(3), 885–900 (2007)

    Article  Google Scholar 

  • Naabil, E., Lamptey, B.L., Arnault, J., Olufayo, A., Kunstmann, H.: Water resources management using the WRF-Hydro modelling system: case-study of the Tono dam in West Africa. J. Hydrol. Reg. Stud. 12, 196–209 (2017)

    Article  Google Scholar 

  • Pokhrel, P., Yilmaz, K.K., Gupta, H.V.: Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures. J. Hydrol. 418, 49–60 (2012)

    Article  Google Scholar 

  • Qie, X., Zhu, R., Yuan, T., Wu, X., Li, W., Liu, D.: Application of total-lightning data assimilation in a mesoscale convective system based on the WRF model. Atmos. Res. 145-146, 255–266 (2014)

    Article  Google Scholar 

  • Ryu, Y., Lim, Y.J., Ji, H.S., Park, H.H., Chang, E.C., Kim, B.J.: Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean peninsula. Asia-Pac. J. Atmos. Sci. 53(4), 421–430 (2017)

    Article  Google Scholar 

  • Schaake, J.C., Koren, V.I., Duan, Q.Y., Mitchell, K., Chen, F.: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. Atmos. 101(D3), 7461–7475 (1996)

    Article  Google Scholar 

  • Senatore, A., Mendicino, G., Gochis, D.J., Yu, W., Yates, D.N., Kunstmann, H.: Fully coupled atmosphere-hydrology simulations for the Central Mediterranean: impact of enhanced hydrological parameterization for short and long time scales. J. Adv. Model. Earth Syst. 7(4), 1693–1715 (2015)

    Article  Google Scholar 

  • Silver, M., Karnieli, A., Ginat, H., Meiri, E., Fredj, E.: An innovative method for determining hydrological calibration parameters for the WRF-hydro model in arid regions. Environ. Model. Softw. 91, 47–69 (2017)

    Article  Google Scholar 

  • Sivapalan, M., Blöschl, G.: Transformation of point rainfall to areal rainfall: intensity-duration-frequency curves. J. Hydrol. 204(1–4), 150–167 (1998)

    Article  Google Scholar 

  • Skamarock, W.C., Klemp, J.B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227(7), 3465–3485 (2008)

    Article  Google Scholar 

  • Strobach, E., Bel, G.: Improvement of climate predictions and reduction of their uncertainties using learning algorithms. Atmos. Chem. Phys. 15(15), 8631–8641 (2015)

    Article  Google Scholar 

  • Tian, J., Liu, J., Wang, J., Li, C., Yu, F., Chu, Z.: A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of northern China. Atmos. Res. 191, 141–155 (2017)

    Article  Google Scholar 

  • Wood, E.F., et al.: The project for intercomparison of land-surface parameterization schemes (pilps) phase 2 (c) red–arkansas river basin experiment: 1. experiment description and summary intercomparisons. Glob. Planet. Chang. 19(1–4), 115–135 (1998)

    Article  Google Scholar 

  • Yang, B., Zhang, Y., Qian, Y.: Simulation of urban climate with high-resolution WRF model: a case study in Nanjing, China. Asia-Pac. J Atmos. Sci. 48(3), 227–241 (2012)

    Article  Google Scholar 

  • Yucel, I., Onen, A., Yilmaz, K., Gochis, D.: Calibration and evaluation of a flood forecasting system: utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol. 523, 49–66 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (51822906), the National Key Research and Development Project (2017YFC1502405), the Major Science and Technology Program for Water Pollution Control and Treatment (2018ZX07110001), and the IWHR Research & Development Support Program (WR0145B732017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Liu.

Additional information

Responsible Editor: Seok-Woo Son.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, J., Li, C. et al. Parameter Sensitivity Analysis of the WRF-Hydro Modeling System for Streamflow Simulation: a Case Study in Semi-Humid and Semi-Arid Catchments of Northern China. Asia-Pacific J Atmos Sci 57, 451–466 (2021). https://doi.org/10.1007/s13143-020-00205-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-020-00205-2

Keywords

Navigation