Skip to main content

Advertisement

Log in

Agronomical parameters of host and non-host legumes inoculated with Melilotus indicus-isolated rhizobial strains in desert unreclaimed soil

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In a search for identification of rhizobial strains with superior N2-fixation efficiency and improved plant agronomic characteristics upon inoculation, four strains, 4.21, 9.17, 11.2 and 14.1, isolated from root nodules of wild-grown Melilotus indicus have been used to inoculate field-grown common bean, pea, cowpea and fenugreek plants. Uninoculated plants and those inoculated with host-specific commercial inoculants were used as a control. The root length, shoot height, shoot dry weight and root dry weight and the grain yield of the plants were determined after harvest. The content of N, organic C and carbohydrates content of the grain were also recorded. The inoculation with the strains 4.21 and 14.1 increased the grain yield of the fenugreek compared both with the uninoculated plants and those inoculated with the commercial strain ARC-1. The grain yield of the common bean treated with the strains 9.17 and 14.1 was also higher than that of the uninoculated and the commercial strains ARC-301. In contrast, none of the strains increased the grain yield of the pea and cowpea plants compared to the commercial strains ARC-201 and ARC-169, respectively. Significant increases of some agronomical parameters were observed in some plant–bacterium couples, albeit nodulation was not observed. It is possible that the positive effects of rhizobial inoculation on the agronomical parameters of the non-nodule forming legumes could be due to plant growth promotion characteristic of the strains used for inoculation. Analysis of the phylogeny of the almost complete 16S rRNA sequence of the rhizobial inoculants revealed that the strains 4.21 and 9.17 clustered together with R. skierniewicense and R. rosettiformans, respectively, and that the strains 11.2 and 14.1 grouped with E. meliloti. All the four strains produced IAA, and showed biocontrol activity against Rhizotocnia solani, Fusarium oxysporum, Pythium ultimum, Alternaria alternata and Sclerotonia rolsfi, albeit to a different extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel Latef AA, Ahmad P (2015) Legumes and breeding under abiotic stress: an overview. In: Azooz MM, Ahmad P (eds) Legumes under environmental stress: yield, improvement and adaptations, 1st edn. Wiley, New York, pp 1–20

    Google Scholar 

  • Allito BB, Ewusi-Mensah N, Alemneh AA (2014) Rhizobia strain and host–legume interaction effects on nitrogen fixation and yield of grain legume: A Review. Mol Soil Biol 6:1–12

    Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N et al (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Azani N, Banineau M, Bailey CD et al (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: the legume phylogeny working group (LPWG). Taxon 66:44–77

    Article  Google Scholar 

  • Bellabarba A, Fagorzi C, di Cenzo GC et al (2019) Deciphering the symbiotic plant microbiome: translating the most recent discoveries on rhizobia for the improvement of agricultural practices in metal-contaminated and high saline lands. Agronomy 9:529

    Article  CAS  Google Scholar 

  • Bhagat D, Sharma P, Sirari A et al (2014) Screening of Mesorhizobium spp. for control of Fusarium wilt in chickpea in vitro conditions. Int J Curr Microbiol Appl Sci 3:923–930

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Çakmakçi R, Turan M, Kıtır N, Gunes A et al (2017) The role of soil beneficial bacteria in wheat production: a review. In: Wanyera R, Owuoche J (eds) Wheat improvement, management and utilization. Intech, London

    Google Scholar 

  • Chianu JN, Nkonya EM, Mairura FS et al (2011) Biological nitrogen fixation and socioeconomic factors for legume production in sub-Saharan Africa: a review. Agron Sustain Dev 31:139–154

    Article  Google Scholar 

  • Ciancio A, Pieterse CMJ, Mercado-Blanco J (2019) Harnessing useful rhizosphere microorganisms for pathogen and pest biocontrol. Front Microbiol 10:1935

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lajudie PM, Andrews M, Ardley J et al (2019) Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 69:1582–1863

    Google Scholar 

  • El Batanony NH, Bdwy AM, Hassan HE et al (2015) Biodiversity of rhizobia that nodulate Melilotus indicus L. in Egyptian soils. Egypt J Microbiol 50:101–117

    Article  Google Scholar 

  • El Lithy ME, El Batanony NH, Moreno S et al (2014) A selected rhizobial strain isolated from wild-grown Medicago monspeliaca improves productivity of non-specific host Trifolium alexandrinum. Appl Soil Ecol 73:134–139

    Article  Google Scholar 

  • Flores-Félix JD, Menéndez E, Rivera LP et al (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882

    Article  CAS  Google Scholar 

  • Flores-Félix JD, Marcos-García M, Silva LR (2015) Rhizobium as plant probiotic for strawberry production under microcosm conditions. Symbiosis 67:25–32

    Article  CAS  Google Scholar 

  • García-Fraile P, Carro L, Robledo M, Ramírez-Bahena MH et al (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 7:e38122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granada CE, Arruda L, Brito Lisboa B et al (2014) Diversity of native rhizobia isolated in south Brazil and their growth promotion effect on white clover (Trifolium repens) and rice (Oryza sativa) plants. Biol Fertil Soils 50:123–132

    Article  CAS  Google Scholar 

  • Grobelak A, Napora A, Kazprzak M (2015) Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol Eng 84:22–28

    Article  Google Scholar 

  • Grusak MA (2002) Enhancing mineral content in plant food products. J Am Coll Nutr 21:178–183

    Article  Google Scholar 

  • Hafeez F, Safdar M, Chaudhry A et al (2004) Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Anim Prod Sci 44:617–622

    Article  Google Scholar 

  • Herrera-Cervera JA, Cabello-Mellado J, Laguerre G et al (1999) At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microb Ecol 30:87–97

    Article  CAS  Google Scholar 

  • Hou BC, Wang ET, Li Y et al (2009) Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) Vassilcz. Int J Syst Evol Microbiol 59:3051–3057

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez F, Wall L, Fabra A (2017) Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. J Exp Bot 68:1905–1918

    PubMed  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  • Kairis O, Kosmas C, Karavitis CH et al (2014) Evaluation and selection of indicators for land degradation and desertification monitoring: types of degradation, causes, and implications for management. Environ Manag 54:971–982

    Article  Google Scholar 

  • Kayser-Vargas L, Gazolla-Volpiano C, Brito-Lisboa B et al (2017) Potential of Rhizobia as plant growth promoting rhizobacteria. In: Saghir-Khan M, Musarrat J, Zaidi A (eds) Microbes for legume improvement. Springer International Publishing AG, New York, pp 153–174

    Chapter  Google Scholar 

  • Kearse M, Moir R, Wilson M et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MS, Zaidi A, Rizvi A et al (2017) Inoculation effects of associative plant growth-promoting rhizobacteria on the performance of legumes. In: Saghir-Khan M, Musarrat J, Zaidi A (eds) Microbes for legume improvement. Springer International Publishing AG, New York, pp 261–277

    Chapter  Google Scholar 

  • Kucuk C, Cevheri C (2015) In vitro antagonism of Rhizobium strains isolated from various legumes. J Pure Appl Microbiol 9:503–511

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger data sets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loper J, Schroth M (1986) Influence of bacteria sources of indol-3-acetic acid on root elongation of sugar beet. Phytopathology 76:386–389

    Article  CAS  Google Scholar 

  • Madar Z, Stark AH (2002) New legume sources as therapeutic agents. Br J Nutr 88:287–292

    Article  CAS  Google Scholar 

  • Mahmood A, Athar M (2017) A resume of the nodulation surveys among wild legumes. Int J Biol Res 5:59–64

    Google Scholar 

  • Peix A, Ramirez-Bahena MH, Velazquez E et al (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42

    Article  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS et al (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:1–29

    Article  CAS  Google Scholar 

  • Rubio-Canalejas A, Celador-Lera L, Cruz-González X et al (2016) Rhizobium as potential biofertilizer of Eruca sativa. In: González-Andrés F, James E (eds) Biological nitrogen fixation and beneficial plant–microbe interaction. Springer, Berlin, pp 213–220

    Chapter  Google Scholar 

  • Saitou N, Nei M (1987) A neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 44:406–425

    Google Scholar 

  • SAS (Statistical Analysis System) (2003) SAS Institute. Iowa University, Iowa

    Google Scholar 

  • Scagliola M, Pii Y, Mimmo T et al (2016) Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiol Biochem 107:187–196

    Article  CAS  PubMed  Google Scholar 

  • Schlindwein G, Vargas LK, Lisboa BB et al (2008) Influence of rhizobial inoculation on seedling vigor and germination of lettuce. Cienc Rural 38:658–664

    Article  Google Scholar 

  • Schwember AR, Schulze J, del Pozo A et al (2019) Regulation of symbiotic nitrogen fixation in legume root nodules. Plants 8:333

    Article  CAS  PubMed Central  Google Scholar 

  • Shamseldin A, Abdelkhalek A, Sadowsky MJ (2017) Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review. Symbiosis 71:91–109

    Article  Google Scholar 

  • Solano BR, Maicas JB, Manero FJG (2008) Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant–bacteria interactions: strategies and techniques to promote plant growth. Wiley, Weinheim, pp 41–52

    Chapter  Google Scholar 

  • Sprent JI, Ardley J, James EK (2017) Biogeography of nodulated legumes and the nitrogen fixing symbionts. New Phytol 215:40–56

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2004) Benefits of inoculating legume crops with rhizobia in the Northern Great Plains. Crop Manag 3:1

    Article  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 336:129–142

    Article  CAS  Google Scholar 

  • Yoon SH, Ha SM, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahran HH (1999) Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiol Mol Biol Rev 63:968–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (2009) Enhancement of rhizobia-legumes symbioses and nitrogen fixation for crops productivity improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 227–254

    Chapter  Google Scholar 

  • Zhu H, Choi H, Cook DR et al (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was Granted by the Sadat City University. The authors thank Dr. R. Elsaid Mohamad and Mr. A. H. Soliman Dobble for assistance with statistics and field experiments, respectively. Financial support was also obtained from the ERDF-cofinanced project AGL2017–85676R from Ministerio de Economía, Industria y Competitividad (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Castellano-Hinojosa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batanony, N.H.E., Castellano-Hinojosa, A., Mamdouh, A. et al. Agronomical parameters of host and non-host legumes inoculated with Melilotus indicus-isolated rhizobial strains in desert unreclaimed soil. Arch Microbiol 202, 1929–1938 (2020). https://doi.org/10.1007/s00203-020-01907-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01907-x

Keywords

Navigation