Skip to main content
Log in

Cyclic Behaviour and Durability Analysis of Sand Grouted with Optimum Colloidal Silica Content

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The main objective of the current research is to study the dynamic behaviour of colloidal silica treated grout. The treatment of foundation soil with colloidal silica improves the cyclic strength of the soil, which has the potential to reduce damages in buildings during earthquakes. Cyclic triaxial tests were conducted at various double amplitudes to understand the cyclic resistance of the colloidal silica grouted sand. The test results of untreated samples at different relative densities were compared with the treated samples having the same relative densities. The present study revealed that the optimum percentage of colloidal silica decreases with an increase in relative density. The grout inside the treated area would undergo geothermal and water table changes. Wetting and drying cycles were studied to understand the durability of the above-mentioned grout. The samples sustained 18 wetting and drying cycles which in turn proves its superior durability characteristics. It was observed that the confining pressure, total energy capacity, as well as brittleness index and colloidal silica percentages, are some factors determining strength characteristics. Furthermore, the addition of colloidal silica in sand improves the cyclic resistance strength, damping ratio, and the shear modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Seed, H.B.; Lee, K.L.: Liquefaction of saturated sands during cyclic loading. J. Soil Mech. Found. Div. 92(SM6), 105H–134H (1966)

    Google Scholar 

  2. Huang, Y.; Wen, Z.: Recent developments of soil improvement methods for seismic liquefaction mitigation. Nat. Hazards (2015). https://doi.org/10.1007/s11069-014-1558-9

    Article  Google Scholar 

  3. Winterkorn, H.F.; Pamukcu, S.: Soil stabilization and grouting. In: Foundation Engineering Handbook (1991). https://doi.org/10.1007/978-1-4757-5271-7_9.

  4. Orense, R.P.; Morita, Y.; Ide, M.: Assessment and mitigation of liquefaction risk for existing building foundation. In: ISRM Internationl Symposium 2000, IS 2000 (2018)

  5. Guettaya, I.; El Ouni, M.R.; Moss, R.E.S.: Verifying liquefaction remediation beneath an earth dam using SPT and CPT based methods. Soil Dyn. Earthq. Eng. (2013). https://doi.org/10.1016/j.soildyn.2013.06.009

    Article  Google Scholar 

  6. Gallagher, P.M.; Mitchell, J.K.: Passive site remediation for mitigation of liquefaction risk. In: Proceedings of MEDAT-2 Workshop MCEER, University of Buffalo, SUNY, pp. 149–155 (2000)

  7. Gallagher, P.M.; Mitchell, J.K.: Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil Dyn. Earthq. Eng. (2002). https://doi.org/10.1016/s0267-7261(02)00126-4

    Article  Google Scholar 

  8. Maher, M.H.; Ro, K.S.; Welsh, J.P.: Cyclic undrained behavior and liquefaction potential of sand treated with chemical grouts and microfine cement (MC-500). Geotech. Test. J. 17(2), 159–170 (1994). https://doi.org/10.1520/GTJ10088J

    Article  Google Scholar 

  9. Vipulanandan, C.; Ata, A.: Cyclic and damping properties of silicate-grouted sand. J. Geotech. Geoenviron. Eng. (2000). https://doi.org/10.1061/(ASCE)1090-0241(2000)126:7(650)

    Article  Google Scholar 

  10. Delfosse-Ribay, E.; Djeran-Maigre, I.; Cabrillac, R.; Gouvenot, D.: Shear modulus and damping ratio of grouted sand. Soil Dyn. Earthq. Eng. (2004). https://doi.org/10.1016/j.soildyn.2004.02.004

    Article  Google Scholar 

  11. Porcino, D.; Marcianò, V.; Granata, R.: Undrained cyclic response of a silicate-grouted sand for liquefaction mitigation purposes. Geomech. Geoengin. (2011). https://doi.org/10.1080/17486025.2011.560287

    Article  Google Scholar 

  12. Krishnan, J.; Shukla, S.: The behaviour of soil stabilised with nanoparticles: an extensive review of the present status and its applications. Arab. J. Geosci. 12, 436 (2019). https://doi.org/10.1007/s12517-019-4595-6

    Article  Google Scholar 

  13. Yonekura, R.; Miwa, M.: Fundamental properties of Sodium Silicate based grout. In: Proceedings of 11th Southeast Asia Geotechnical Conference Singapore, pp. 439–444 (1993)

  14. Persoff, P.; Apps, J.; Moridis, G.J.; Whang, J.M.: Effect of Dilution and Contaminants on Sand Grouted with Colloidal Silica. J. Geotech. Geoenviron. Eng. 125, 461–469 (1999). https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(461)

    Article  Google Scholar 

  15. Liao, H.J.; Huang, C.C.; Chao, B.S.: Liquefaction Resistance of a Colloid Silica Grouted Sand (2004). https://doi.org/10.1061/40663(2003)77

  16. Pamuk, A.; Gallagher, P.M.; Zimmie, T.F.: Remediation of piled foundations against lateral spreading by passive site stabilization technique. Soil Dyn. Earthq. Eng. (2007). https://doi.org/10.1016/j.soildyn.2007.01.011

    Article  Google Scholar 

  17. Gallagher, P.M.; Pamuk, A.; Abdoun, T.: Stabilization of liquefiable soils using colloidal silica grout. J. Mater. Civ. Eng. 19, 33–40 (2007). https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33)

    Article  Google Scholar 

  18. Hamderi, M.; Gallagher, P.M.; Lin, Y.: Numerical model for colloidal silica injected column tests. Vadose Zo. J. (2014). https://doi.org/10.2136/vzj2013.07.0138

    Article  Google Scholar 

  19. Moridis, G.J.; Persoff, P.; Apps, J.A.; Myer, L.; Pruess, K.; Yen, P.: A field test of permeation grouting in heterogeneous soils using a new generation of barrier liquids. J. Hydrol. 139, 79–96 (1995). https://doi.org/10.1149/1.2221597

    Article  Google Scholar 

  20. Noll, M.R.; Bartlett, C.; Dochat, T.M.: In situ permeability reduction and chemical fixation using colloidal silica. In: Proceedings of Sixth National Outdoor Action Conference Las Vegas, pp 443–458 (1992)

  21. Towhata, I.; Kabashima, Y.: Mitigation of seismically-induced deformation of loose sandy foundation by uniform permeation grouting. In: Proceedings of Earthquakes Geotechnical Engineering, Satellite Conference, 15th International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, pp. 313–318 (2001)

  22. Iler, R.K.: The Chemistry of Silica. Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley, New York (1979). https://doi.org/10.1002/ange.19800920433

  23. Persoff, P.; Finsterle, S.; Moridis, G.J.; Apps, J.; Pruess, K.; Muller, S.J.: Injectable barriers for waste isolation (1995). https://doi.org/10.2172/106544

  24. Yates, P.C.: Kinetic of gel formation of colloidal silica sols. In: 200th National Meeting (1990) (Abstract)

  25. Scott, R.P.W.: Silica Gel and Bonded Phases: Their Production, Properties and Use in LC. Wiley, New York (1993)

    Google Scholar 

  26. Santamarina, J.C.; Klein, K.A.; Fam, M.A.: Soils and Waves. JWiley, New York (2001)

    Google Scholar 

  27. Spencer, L.; Rix, G.J.; Gallagher, P.: Colloidal Silica Gel and Sand Mixture Dynamic Properties. In: Geotechnical Earthquake Engineering Soil Dynamics IV, pp. 1–10 (2008). https://doi.org/10.1061/40975(318)101.

  28. Wong, C.; Pedrotti, M.; El Mountassir, G.; Lunn, R.J.: A study on the mechanical interaction between soil and colloidal silica gel for ground improvement. Eng. Geol. (2018). https://doi.org/10.1016/j.enggeo.2018.06.011

    Article  Google Scholar 

  29. Karol, R.H.: Chemical Grouting and Soil Stabilization. Revised and Expanded. Civil and Environmental Engineering, vol. 12. CRC Press, Boca Raton (2003)

  30. Conlee, C.T.; Gallagher, P.M.; Boulanger, R.W.; Kamai, R.: Centrifuge modeling for liquefaction mitigation using colloidal silica stabilizer. J. Geotech. Geoenviron. Eng. 138, 1334–1345 (2012). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000703

    Article  Google Scholar 

  31. Díaz-Rodríguez, J.A.; Antonio-Izarraras, V.M.; Bandini, P.; López-Molina, J.A.: Cyclic strength of a natural liquefiable sand stabilized with colloidal silica grout. Can. Geotech. J. 45, 1345–1355 (2008). https://doi.org/10.1139/t08-072

    Article  Google Scholar 

  32. Vranna, A.; Tika, T.: The mechanical behaviour of a clean sand stabilized with colloidal silica. In: Proceedings of Geotechnical Engineering for Infrastructure and Development, pp. 3443–3448 (2015)

  33. Georgiannou, V.N.; Pavlopoulou, E.-M.; Bikos, Z.: Mechanical behaviour of sand stabilised with colloidal silica. Geotech. Res. (2017). https://doi.org/10.1680/jgere.16.00017

    Article  Google Scholar 

  34. IS 2720 Part III, Determination of specific gravity. Bur. Indian Stand. (1980)

  35. Ladd, R.: Preparing test specimens using undercompaction. Geotech. Test. J. 1(1), 16–23 (1978). https://doi.org/10.1520/GTJ10364J

    Article  Google Scholar 

  36. IS 2720 Part II, Determination of the shear strength parameters of a specimen tested in unconsolidated undrained triaxial compression without the measurement of pore water pressure (1993)

  37. IS 2720 Part IV, Determination of Consolidation Properties by Bureau of Indian Standards (1965)

  38. Consoli, N.C.; De Moraes, R.R.; Festugato, L.: Parameters controlling tensile and compressive strength of fiber-reinforced cemented soil. J. Mater. Civ. Eng. (2013). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000555

    Article  Google Scholar 

  39. Consoli, N.C.; da Fonseca, A.V.; Silva, S.R.; Cruz, R.C.; Fonini, A.: Parameters controlling stiffness and strength of artificially cemented soils. Geotechnique (2012). https://doi.org/10.1680/geot.8.P.084

    Article  Google Scholar 

  40. Consoli, N.C.; Rotta, G.V.; Prietto, P.D.M.: Influence of curing under stress on the triaxial response of cemented soils. Géotechnique 52, 382–384 (2002). https://doi.org/10.1680/geot.52.5.382.38705

    Article  Google Scholar 

  41. Consoli, N.C.; Foppa, D.; Festugato, L.; Heineck, K.S.: Key parameters for strength control of artificially cemented soils. J. Geotech. Geoenviron. Eng. (2007). https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197)

    Article  Google Scholar 

  42. Consoli, N.C.; Viana da Fonseca, A.; Cruz, R.C.; Heineck, K.S.: Fundamental parameters for the stiffness and strength control of artificially cemented sand. J. Geotech. Geoenviron. Eng. (2009). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000008

    Article  Google Scholar 

  43. Da Fonseca, A.V.; Cruz, R.C.; Consoli, N.C.: Strength properties of sandy soil-cement admixtures. In: Proceedings of 17th Intnational Conference on Soil Mechanics and Geotechnical Engineering. The Academia and Practice of Geotechnical Engineering (2009). https://doi.org/10.3233/978-1-60750-031-5-52

  44. Rong, H.; Qian, C.X.; Li, L.Z.: Influence of molding process on mechanical properties of sandstone cemented by microbe cement. Constr. Build. Mater. (2012). https://doi.org/10.1016/j.conbuildmat.2011.08.039

    Article  Google Scholar 

  45. Liu, X.; Buzzi, O.: Use of hand-spray plaster as a coating for soil bulk volume measurement. Geotech. Test. J. (2014). https://doi.org/10.1520/GTJ20130091

    Article  Google Scholar 

  46. Mahawish, A.; Bouazza, A.; Gates, W.P.: Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels. J. Geotech. Geoenviron. Eng. (2019). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002066

    Article  Google Scholar 

  47. Choobbasti, A.J.; Vafaei, A.; Soleimani Kutanaei, S.: Static and cyclic triaxial behavior of cemented sand with nanosilica. J. Mater. Civ. Eng. (2018). https://doi.org/10.1061/(asce)mt.1943-5533.0002464

    Article  Google Scholar 

  48. Bishop, Progressive failure—with special reference to the mechanism causing it. In: Proceedings of Geotechnical Conference on Shear Strength Properties of Natural Soils and Rocks, Oslo, vol. 2, pp. 142–150 (1967)

  49. Consoli, N.C.; Montardo, J.P.; Donato, M.; Prietto, P.D.M.: Effect of material properties on the behavior of sand-cement–fiber composites. Proc. Inst. Civ. Eng. Ground Improv. 8(2), 77–90 (2004). https://doi.org/10.1680/grim.2004.8.2.77

    Article  Google Scholar 

  50. Lundgren, R.; Mitchell, J.K.; Wilson, J.H.: Effects of loading method on triaxial test results. J. Soil Mech. Found. Div. ASCE 94(SM2), 407–419 (1968)

    Google Scholar 

  51. Silver, M.L.; Park, T.K.: Liquefaction potential evaluated from cyclic strain controlled properties tests on sands. Soils Found. Jpn. Soc. Soil Mech. Found. Eng. 16(3), 51–66 (1976)

    Google Scholar 

  52. Silver, M.L.; Chan, C.K.; Ladd, R.S.; Lee, K.L.; Tiedemann, D.A.; Townsend, F.C.; Valera, J.E.; Wilson, J.H.: Cyclic triaxial strength of saturated test sand. J. Geotech. Eng. 102(5), 511–523 (1976)

    Google Scholar 

  53. ASTM Designation: D 3999-91 (Reproduced 2003) Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils using the Cyclic Triaxial Apparatus. Annual Book of ASTM Standards (1996)

  54. Seed, H.B.; Idriss, I.M.: Ground Motions and Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute Monograph, Oakland (1982)

    Google Scholar 

Download references

Acknowledgements

The first and second authors would like to thank the Ministry of Human Resource and Development (MHRD), Govt. of India for providing fellowship and for funding the on-going research. The authors would like to thank the Institute of the Seismological Research Centre, Gandhinagar and the Department of Applied Mechanics, SVNIT, Surat for all the support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiji Krishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, J., Sharma, P., Shukla, S. et al. Cyclic Behaviour and Durability Analysis of Sand Grouted with Optimum Colloidal Silica Content. Arab J Sci Eng 45, 8129–8144 (2020). https://doi.org/10.1007/s13369-020-04643-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04643-y

Keywords

Navigation