Skip to main content
Log in

Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The Chéliff watershed has one of the most spatially diverse pluviometric regimes in northwestern Algeria. Understanding these regimes is essential for managing water resources and identifying the most vulnerable regions to climate change. Mean annual rainfall data (1972–2012) for 58 meteorological stations and their corresponding elevation were used. Maps were produced using three geostatistical interpolation algorithms: ordinary kriging (OK), regression-kriging (RK), and kriging with external drift (KED); the first algorithm uses only rainfall while the other two use also elevation. Interpolation methods were compared using statistical indicators of cross-validation. Results indicate that KED is the least biased interpolator with limited number of strong underestimates or overestimates and limited relative importance of this strong underestimation or overestimation, followed by RK and finally OK. The best match between measured and predicted values was for KED (correlation coefficient of 0.82), followed by RK (0.79), while OK is far from them (0.70). KED can be considered the best model because it gives the lowest values of mean error, mean absolute error, and root mean square error (− 1.9, 35.4, and 49.5 mm, respectively) and the highest values of Willmott agreement index, Lin concordance coefficient, and Nash–Sutcliffe efficiency coefficient (0.89, 0.80, and 0.67, respectively), results of RK are intermediate, while those of OK are the worst. There is clearly significant improvement in the prediction performance taking into account the elevation, in particular by KED. Results show that KED is the most appropriate to produce map of mean annual rainfall in the Chéliff watershed, Algeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhikary SK, Muttil N, Yilmaz AG (2017) Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments. Hydrol Process 31:2143–2161

    Google Scholar 

  • Agnew MD, Palutikof JP (2000) GIS-based construction of baseline climatologies for the Mediterranean using terrain variables. Clim Res 14:115–127

    Google Scholar 

  • Agou VD, Varouchakis EA, Hristopulos DT (2019) Geostatistical analysis of precipitation in the island of Crete (Greece) based on a sparse monitoring network. Environ Monit Assess 191:353

    Google Scholar 

  • Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. WCDMP-No. 53, WMO-TD No. 1186. World Meteorological Organization, Geneva: Switzerland

  • Ahmed S, De Marsily G (1987) Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water Reso Rese 23:1717–1737

    Google Scholar 

  • Alsamamra H, Ruiz-Arias JA, Pozo-Vazquez D, Tovar-Pescador J (2009) A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain. Agric Forest Meteorol 149:1343–1357

    Google Scholar 

  • Amini MA, Ghazale Torkan G, Eslamian S, Zareian MJ, Adamowski JF (2019) Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological parameters at large watershed scales. Acta Geophys 67:191–203

    Google Scholar 

  • Amrani R (2011) Variabilité spatio-temporelle de la sécheresse dans le bassin versant d’oued Chéliff, Algérie. Thèse de Magister. Hassiba Ben Bouali University, Chlef, Algeria. 82 pages

  • Bajat B, Pejovic M, Lukovic J, Manojlovic P, Ducic V, Mustafic S (2013) Mapping average annual precipitation in Serbia (1961–1990) by using regression kriging. Theor Appl Climatol 112:1–13

    Google Scholar 

  • Bardossy A, Pegram G (2013) Interpolation of precipitation under topographic influence at different time scales. Water Reso Rese 49:4545–4565

    Google Scholar 

  • Batista PVG, Silva MLN, Avalos FAP, de Oliveira MS, de Menezes MD, Curi N (2017) Hybrid kriging methods for interpolating sparse river bathymetry point data. Ciência e Agrotecnologia 41:402–412

    Google Scholar 

  • Berndt C, Haberlandt U (2018) Spatial interpolation of climate variables in Northern Germany—influence of temporal resolution and network density. J Hydrol Region Stud 15:184–202

    Google Scholar 

  • Boer EPJ, de Beurs KM, Hartkamp AD (2001) Kriging and thin plate splines for mapping climate variables. Int J Appl Earth Obs Geoinf 3:146–154

    Google Scholar 

  • Borges PA, Franke Y, da Anunciação YMT, Weiss H, Bernhofer C (2016) Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theor Appl Climatol 123:335–348

    Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J Royal Stat Soc Series B 26:211–252

    Google Scholar 

  • Cadro S, Cherni-Cadro S, Markovic M, Zurovec J (2019) A reference evapotranspiration map for Bosnia and Herzegovina. Int Soil Water Conserv Rese 7:89–101

    Google Scholar 

  • Cantet P (2017) Mapping the mean monthly precipitation of a small island using kriging with external drifts. Theor Appl Climatol 127:31–44

    Google Scholar 

  • Chen T, Ren LL, Yuan F, Yang XL, Jiang SH, Tang TT, Liu Y, Zhao CX, Zhang LM (2017) Comparison of spatial interpolation schemes for rainfall data and application in hydrological modeling. Water 9:342

    Google Scholar 

  • Chua SH, Bras RL (1982) Optimal estimators of mean areal precipitation in regions of orographic influence. J Hydrol 57:23–48

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Revised edition. Wiley, New York

  • Dahri ZH, Ludwig F, Moors E, Ahmad B, Khan A, Kabat P (2016) An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Sci Total Environ 548:289–306

    Google Scholar 

  • De Wit AJW, de Bruin S, Torfs PJJF (2008) Representing uncertainty in continental-scale gridded precipitation fields for agrometeorological modeling. J Hydrometeorol 9:1172–1190

    Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: Geostatistical Software Library and user’s guide, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Diggle PJ, Ribeiro PJ Jr (2007) Model-based geostatistics. Springer, New York

    Google Scholar 

  • Dingman SL, Seely-Reynolds DM, Reynolds RC (1988) Application of kriging to estimating mean annual precipitation in a region of orographic influence. Water Resour Bull 24:329–339

    Google Scholar 

  • Diodato N (2005) The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Int J Climatol 25:351–363

    Google Scholar 

  • Diodato N, Ceccarelli M (2005) Interpolation processes using multivariate geostatistics for mapping of climatological precipitation mean in the Sannio Mountains (southern Italy). Earth Surf Process Landf 30:259–268

    Google Scholar 

  • Dirks KN, Hay JE, Stow CD, Harris D (1998) High-resolution studies of rainfall on Norfolk Island. Part 2: interpolation of rainfall data. J Hydrol 208:187–193

    Google Scholar 

  • Dobesch H, Dumolard P, Dyras I (2007) Spatial interpolation for climate data the use of GIS in climatology and meteorology. ISTE, London

  • Erdin R, Frei C, Kunsch HR (2012) Data transformation and uncertainty in geostatistical combination of radar and rain gauges. J Hydrometeorol 13:1332–1346

    Google Scholar 

  • Feki H, Slimani M, Cudennec C (2012) Incorporating elevation in rainfall interpolation in Tunisia using geostatistical methods. Hydrol Sci J 57:1294–1314

    Google Scholar 

  • Foehn A, Hernández JG, Schaefli B, de Cesare G (2018) Spatial interpolation of precipitation from multiple rain gauge networks and weather radar data for operational applications in Alpine catchments. J Hydrol 563:1092–1110

    Google Scholar 

  • Frazier AG, Giambelluca TW, Diaz HF, Needham HL (2016) Comparison of geostatistical approaches to spatially interpolate month-year rainfall for the Hawaiian islands. Int J Climatol 36:1459–1470

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129

    Google Scholar 

  • Gringarten E, Deutsch CV (2001) Teacher’s aide: variogram interpretation and modeling. Math Geol 33:507–534

    Google Scholar 

  • Haberlandt U (2007) Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. J Hydrol 332:144–157

    Google Scholar 

  • Hartkamp AD, de Beurs K, Stein A, White JW (1999) Interpolation techniques for climate variables. NRG-GIS Series 99-01. CIMMYT, Mexico, D.F., Mexico

  • Hengl T, Heuvelink GBM, Stein A (2003) Comparison of kriging with external drift and regression-kriging. Technical note. ITC, Enschede, The Netherlands

  • Hengl T, Heuvelink GBM, Stein A (2004) A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120:75–93

    Google Scholar 

  • Hengl T, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: from equations to case studies. Comput Geosci 33:1301–1315

    Google Scholar 

  • Hengl T, Nussbaum M, Wright MN, Heuvelink GBM, Graler B (2018) Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 6:e5518

    Google Scholar 

  • Hudson G, Wackernagel H (1994) Mapping temperature using kriging with external drift: theory and an example from Scotland. Int J Climatol 14:77–91

    Google Scholar 

  • Hutchinson MF (1995) Interpolating mean rainfall using thin plate smoothing splines. Int J Geog Inform Syst 9:385–403

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2003) ArcGIS 9: using ArcGIS geostatistical analyst. ESRI Press, Redlands

    Google Scholar 

  • Kisaka M, Monicah Mucheru-Muna O, Ngetich FK, Mugwe J, Mugendi D, Mairura F, Shisanya C, Makokha GL (2016) Potential of deterministic and geostatistical rainfall interpolation under high rainfall variability and dry spells: case of Kenya’s central highlands. Theor Appl Climatol 124:349–364

    Google Scholar 

  • Kumari M, Singh CK, Basistha A, Dorjie S, Tamang TB (2017) Non-stationary modelling framework for rainfall interpolation in complex terrain. Int J Climatol 37:4171–4185

    Google Scholar 

  • Laborde JP, Mouhous N (1998) Notice d’utilisation du logiciel HYDROLAB (Version 98.2). Équipe Gestion et Valorisation de l'Environnement de l'UMR 5651 du CNRS France

  • Lamhamedi MS, Labbé L, Margolis HA, Stowe DC, Blais L, Renaud M (2006) Spatial variability of substrate water content and growth of white spruce seedlings. Soil Sci Soc Am J 70:108–120

    Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Reso Rese 35:233–241

    Google Scholar 

  • Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inform 6:228–241

    Google Scholar 

  • Lloyd CD (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J Hydrol 308:128–150

    Google Scholar 

  • Luo W, Taylor MC, Parker SR (2008) A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int Jour Climatol 28:947–959

  • Ly S, Charles C, Degré A (2011) Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol Earth Syst Sci 15:2259–2274

    Google Scholar 

  • Meddi H, Meddi M, Mahr N, Humbert J (2007) Quantifications des précipitations : applications au Nord-Ouest de l’Algérie –la méthode de Pluvia. Geog Tech 1:44–62

    Google Scholar 

  • Moges SA, Alemaw BF, Chaoka TR, Kachroo RK (2007) Rainfall interpolation using a remote sensing CCD data in a tropical basin—a GIS and geostatistical application. Phys Chem Earth 32:976–983

    Google Scholar 

  • Moore DS (1991) Statistics: concepts and controversies, 3rd edn. W.H. Freeman, New York

    Google Scholar 

  • Moral FJ (2010) Comparison of different geostatistical approaches to map climate variables: application to precipitation. Int J Climatol 30:620–631

    Google Scholar 

  • New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol 21:1899–1922

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modeling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841

    Google Scholar 

  • Odeh I, McBratney A, Chittleborough D (1995) Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma 67:215–226

    Google Scholar 

  • Oliver MA, Webster R (2014) A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena 113:56–69

    Google Scholar 

  • Oliver MA, Webster R (2015) Basic steps in geostatistics: the variogram and kriging. Springer, Heidelberg

    Google Scholar 

  • Pannatier Y (1996) Variowin: software for spatial data analysis in 2D. Springer-Verlag, New York

    Google Scholar 

  • Pardo-Iguzquiza E (1998) Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography. Int J Climato 18:1031–1047

    Google Scholar 

  • Pellicone G, Caloiero T, Modica G, Guagliardi I (2018) Application of several spatial interpolation techniques to monthly rainfall data in the Calabria region (southern Italy). Int J Climatol 38:3651–3666

    Google Scholar 

  • Peterson TC, Easterling DR (1994) Creation of homogeneous composite climatological reference series. Int J Climatol 14:671–679

    Google Scholar 

  • Peterson TC, Easterling DR, Karl TR et al (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18:1493–1517

    Google Scholar 

  • Pons X, Ninyerola M (2008) Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data. Int J Climatol 28:1821–1834

    Google Scholar 

  • Portalés C, Boronat N, Pardo-Pascual JE, Balaguer-Beser A (2010) Seasonal precipitation interpolation at the Valencia region with multivariate methods using geographic and topographic information. Int J Climatol 30:1547–1563

    Google Scholar 

  • Rossiter DG (2005) An introduction to applied geostatistics. International Institute for Geo-information Science and Earth Observation (ITC), Enschede, the Netherlands

  • Rossiter DG (2007) Applied geostatistics. International Institute for Geo-information and Earth Observation (ITC), Enschede, the Netherlands

  • Royston P (1982) An extension of Shapiro and Wilk’s W test for normality to large samples. Appl Stat 31:115–124

    Google Scholar 

  • Schiemann R, Erdin R, Willi M, Frei C, Berenguer M, Sempere-Torres D (2011) Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland. Hydrol Earth Syst Sc 15:1515–1536

    Google Scholar 

  • Schuurmans JM, Bierkens MFP, Pebesma EJ, Uijlenhoet R (2007) Automatic prediction of high-resolution daily rainfall fields for multiple extents: the potential of operational radar. J Hydrometeorol 8:1204–1224

    Google Scholar 

  • Singh P, Kumar N (1997) Effect of orography on precipitation in the western Himalayan region. J Hydrol 199:183–206

    Google Scholar 

  • Subyani AM (2004) Geostatistical study of annual and seasonal mean rainfall patterns in Southwest Saudi Arabia. Hydrol Sci J 49:803–817

    Google Scholar 

  • Tapsoba D, Fortin V, Anctil F, Haché M (2005) Apport de la technique du krigeage avec dérive externe pour une cartographie raisonnée de l’équivalent en eau de la neige: Application aux bassins de la rivière Gatineau. Can J Civ Eng 32:287–297

    Google Scholar 

  • Vicente-Serrano SM, Saz-Sanchez MA, Cuadrat JM (2003) Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Clim Res 24:161–180

    Google Scholar 

  • Vieux B (2001) Distributed hydrologic modeling using GIS. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313

    Google Scholar 

  • Yamamoto JK (2007) On unbiased backtransform of lognormal kriging estimates. Comput Geosci 11:219–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Douaik.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rata, M., Douaoui, A., Larid, M. et al. Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria. Theor Appl Climatol 141, 1009–1024 (2020). https://doi.org/10.1007/s00704-020-03218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03218-z

Navigation