Skip to main content
Log in

Gastric Inflammatory Prognostic Index (GIPI) in Patients with Metastatic Gastro-Esophageal Junction/Gastric Cancer Treated with PD-1/PD-L1 Immune Checkpoint Inhibitors

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Immune checkpoint inhibitors (ICIs) demonstrated improved overall survival (OS) in heavily pretreated unselected patients with metastatic gastro-esophageal junction (mGOJ)/gastric cancer (GC). Attempts to select patients based on programmed death-ligand 1 (PD-L1) expression appear to be suboptimal. A strong rationale suggests a prognostic role for inflammatory biomarkers for ICI-treated patients with mGOJ/GC.

Objective

Our objective was to assess whether inflammatory markers are associated with survival in ICI-treated patients with mGOJ/GC.

Methods

Ten inflammatory markers were retrospectively analyzed at baseline in 57 patients with mGOJ/GC with unknown PD-L1 status treated with second-line ICIs and correlated with OS. Selected variables were then analyzed in a multivariate Cox-regression model and used to build a GIPI nomogram.

Results

Neutrophil/lymphocyte ratio (NLR) and C-reactive protein (CRP) as continuous variables and albumin categorized as less than versus greater than 30 g/dL were the most significant predictors of OS and were used to build the GIPI nomogram. Nomogram-based lowest, mid-low, mid-high, and highest risk quartiles were associated with median OS (mOS) of 14.9, 7.1, 5.6, and 2.1 months, respectively (hazard ratio [HR] of highest vs. lowest risk 4.94; p = 0.0002). By optimally dichotomizing CRP and NLR, patients with one or more of the risk factors NLR > 6, CRP > 15 mg/L, and albumin < 30 g/dL (n = 29) had an mOS of 3.9 versus 14.2 months for patients with no risk factor (n = 28) (HR 2.48; p = 0.0015).

Conclusions

GIPI, combining NLR, CRP, and albumin, is the first inflammatory index with a significant prognostic value in patients with mOGJ/GC receiving ICIs. GIPI merits validation in independent cohorts and prospective clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhao JK, Wu M, Kim CH, Jin ZY, Zhou JY, Han RQ, et al. Jiangsu Four Cancers Study: a large case-control study of lung, liver, stomach, and esophageal cancers in Jiangsu Province, China. Eur J Cancer Prev. 2017;26:357–64.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends–an update. Cancer Epidemiol Biomarkers Prev. 2016;25:16–27.

    Article  PubMed  Google Scholar 

  3. Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12:354–62.

    Article  PubMed  PubMed Central  Google Scholar 

  5. National cancer institute. Surveillance, Epidemiology and End Results (SEER) program, Cancer Stat Facts: Stomach Cancer. 2018. https://seer.cancer.gov/statfacts/html/stomach.html.

  6. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, ToGA Trial Investigators, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

  7. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, REGARD Trial Investigators, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–39.

  8. Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, RAINBOW Study Group, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15:1224–35.

  9. Picardo SL, Doi J, Hansen AR. Structure and optimization of checkpoint inhibitors. Cancers (Basel). 2019;12(1):E38.

    Article  PubMed  CAS  Google Scholar 

  10. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018;4:e180013.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–71.

    Article  CAS  PubMed  Google Scholar 

  13. Shitara K, Özgüroğlu M, Bang YJ, Di Bartolomeo M, Mandalà M, Ryu MH, KEYNOTE-061 investigators, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label controlled, phase 3 trial. Lancet. 2018;392:123–133.

  14. Tabernero J, Van Cutsem E, Bang Y-J, Fuchs CS, Wyrwicz L, Lee KW. Pembrolizumab with or without chemotherapy versus chemotherapy for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: the phase III KEYNOTE-062 study. J Clin Oncol. 2019;37(suppl):LBA4007.

    Article  Google Scholar 

  15. Afreen S, Dermime S. The immunoinhibitory B7–H1 molecule as a potential target in cancer: killing many birds with one stone. Hematol Oncol Stem Cell Ther. 2014;7:1–17.

    Article  PubMed  CAS  Google Scholar 

  16. Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother. 2005;54:307–14.

    Article  CAS  PubMed  Google Scholar 

  17. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hansen AR, Siu LL. PD-L1 testing in cancer: challenges in companion diagnostic development. JAMA Oncol. 2016;2:15–6.

    Article  PubMed  Google Scholar 

  19. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.

    Article  CAS  PubMed  Google Scholar 

  20. Peng F, Hu D, Lin X, Chen G, Liang B, Li C, et al. The monocyte to red blood cell count ratio is a strong predictor of postoperative survival in colorectal cancer patients: the Fujian prospective investigation of cancer (FIESTA) study. J Cancer. 2017;8:967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Formica V, Morelli C, Ferroni P, Nardecchia A, Tesauro M, Pellicori S, et al. Neutrophil/lymphocyte ratio helps select metastatic pancreatic cancer patients benefitting from oxaliplatin. Cancer Biomark. 2016;17:335–45.

    Article  CAS  PubMed  Google Scholar 

  22. Grivennikov SI, Greten FR, Karin M. Immunity, Inflammation, and Cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  24. Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 2012;490:412.

    Article  CAS  PubMed  Google Scholar 

  25. Kemper K, de Goeje PL, Peeper DS, van Amerongen R. Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy. Can Res. 2014;74:5937–41.

    Article  CAS  Google Scholar 

  26. Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6:827–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17:e542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tokito T, Azuma K, Kawahara A, Ishii H, Yamada K, Matsuo N, et al. Predictive relevance of PD-L1 expression combined with CD8+ TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy. Eur J Cancer. 2016;55:7–14.

    Article  CAS  PubMed  Google Scholar 

  29. Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27:462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Allgayer H, Heiss MM, Schildberg FW. Prognostic factors in gastric cancer. Br J Surg. 1997;84:1651–64.

    Article  CAS  PubMed  Google Scholar 

  31. Gabay C, Kuschner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340:1376.

    Article  Google Scholar 

  32. Mantovani A, Allavena P, Sica A, Balkwil F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  33. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.

    Article  CAS  PubMed  Google Scholar 

  34. Müller I, Munder M, Kropf P, Hänsch GM. Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms? Trends Immunol. 2009;30:522–30.

    Article  PubMed  CAS  Google Scholar 

  35. Inderberg EM, Wälchli S, Myhre MR, Trachsel S, Almåsbak H, Kvalheim G, Gaudernack G. T cell therapy targeting a public neoantigen in microsatellite instable colon cancer reduces in vivo tumor growth. Oncoimmunology. 2017;6:e1302631.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ferrone C, Dranoff G. Dual roles for immunity in gastrointestinal cancers. J Clin Oncol. 2010;28:4045–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, Teijeira Á, Oñate C, González Á, et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev. 2017;60:24–31.

    Article  CAS  PubMed  Google Scholar 

  38. Zheng X, Won HS, Sun S, Hong JH, Ko YH. Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: a meta-analysis. Oncotarget. 2017;8:57386–98.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yu X, Zhang Z, Wang Z, Wu P, Qiu F, Huang J. Prognostic and predictive value of tumor-infiltrating lymphocytes in breast cancer: a systematic review and meta-analysis. Clin Transl Oncol. 2016;18:497–506.

    Article  CAS  PubMed  Google Scholar 

  40. Yu Q, Yu XF, Zhang SD, Wang HH, Wang HY, Teng LS. Prognostic role of C-reactive protein in gastric cancer: a meta-analysis. Asian Pac J Cancer Prev. 2013;14:5735–40.

    Article  PubMed  Google Scholar 

  41. Lukaszewicz-Zając M, Mroczko B, Gryko M, Kędra B, Szmitkowski M. Comparison between clinical significance of serum proinflammatory proteins (IL-6 and CRP) and classic tumor markers (CEA and CA 19–9) in gastric cancer. Clin Exp Med. 2011;11:89–96.

    Article  PubMed  CAS  Google Scholar 

  42. Kim DK, Oh SY, Kwon HC, Lee S, Kwon KA, Kim BG, Kim SG, Kim SH, Jang JS, Kim MC, Kim KH, Han JY, Kim HJ. Clinical significances of preoperative serum interleukin-6 and C-reactive protein level in operable gastric cancer. BMC Cancer. 2009;9:155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Vincent JL. Relevance of albumin in modern critical care medicine. Best Pract Res Clin Anaesthesiol. 2009;23:183–91.

    Article  CAS  PubMed  Google Scholar 

  44. Artigas A, Wernerman J, Arroyo V, Vincent JL, Levy M. Role of albumin in diseases associated with severe systemic inflammation: pathophysiologic and clinical evidence in sepsis and in decompensated cirrhosis. J Crit Care. 2016;33:62–70.

    Article  CAS  PubMed  Google Scholar 

  45. Moshage HJ, Janssen JA, Franssen JH, Hafkenscheid JC, Yap SH. Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation. J Clin Invest. 1987;79:1635–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fleck A, Raines G, Hawker F, Trotter J, Wallace PI, Ledingham IM, Calman KC. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet. 1985;1:781–4.

    Article  CAS  PubMed  Google Scholar 

  47. Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. Nutr J. 2010;9:69.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mao M, Wei X, Sheng H, Chi P, Liu Y, Huang X, et al. C-reactive protein/albumin and neutrophil/lymphocyte ratios and their combination predict overall survival in patients with gastric cancer. Oncol Lett. 2017;14:7417–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Guo J, Chen S, Chen Y, Li S, Xu D. Combination of CRP and NLR: a better predictor of postoperative survival in patients with gastric cancer. Cancer Manag Res. 2018;10:315–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ishizuka M, Nagata H, Takagi K, Kubota K. Influence of inflammation-based prognostic score on mortality of patients undergoing chemotherapy for far advanced or recurrent unresectable colorectal cancer. Ann Surg. 2009;250:268–72.

    Article  PubMed  Google Scholar 

  51. Richards CH, Leitch EF, Horgan PG, Anderson JH, McKee RF, McMillan DC. The relationship between patient physiology, the systemic inflammatory response and survival in patients undergoing curative resection of colorectal cancer. Br J Cancer. 2010;103:1356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang X, Hiki N, Nunobe S, Kumagai K, Kubota T, Aikou S, Sano T, Yamaguchi T. Prognostic importance of the inflammation-based Glasgow prognostic score in patients with gastric cancer. Br J Cancer. 2012;107:275–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hsueh SW, Keng-Hao L, Chia-Yen H, Yung-Chia K, Chun-Yi T, Jun-Te H, et al. Significance of the Glasgow Prognostic Score in predicting the postoperative outcome of patients with Stage III gastric cancer. J Clin Med. 2019;8:E1448.

  54. Wakahara T, Ueno N, Maeda T, Kanemitsu K, Yoshikawa T, Tsuchida S, Toyokawa A. Is the Glasgow prognostic score applicable to both early- and advanced-stage gastric cancers? Gastroenterol Res. 2017;10:359–65.

    Article  CAS  Google Scholar 

  55. Forrest LM, McMillan DC, McArdle CS, Angerson WJ, Dunlop DJ. Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer. Br J Cancer. 2003;89:1028–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 2018;4:351–7.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Park W, Kwon D, Saravia D, Desai A, Vargas F, El Dinali M, et al. Developing a predictive model for clinical outcomes of advanced non-small cell lung cancer patients treated with nivolumab. Clin Lung Cancer. 2018;19(280–288):e4.

    Google Scholar 

  58. Ogata T, Satake H, Ogata M, Hatachi Y, Inoue K, Hamada M, Yasui H. Neutrophil-to-lymphocyte ratio as a predictive or prognostic factor for gastric cancer treated with nivolumab: a multicenter retrospective study. Oncotarget. 2018;9:34520–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sasaki A, Nakamura Y, Mishima S, Kawazoe A, Kuboki Y, Bando H, et al. Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer. Gastric Cancer. 2019;22:793–802.

    Article  CAS  PubMed  Google Scholar 

  60. Hironaka S, Ueda S, Yasui H, Nishina T, Tsuda M, Tsumura T, et al. Randomized, open-label, phase III study comparing irinotecan with paclitaxel in patients with advanced gastric cancer without severe peritoneal metastasis after failure of prior combination chemotherapy using fluoropyrimidine plus platinum: WJOG 4007 trial. J Clin Oncol. 2013;31:4438–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Antonella Nardecchia carried out the present study within the Ph.D. program in Experimental and Systems Medicine, XXXII cycle, ‘Tor Vergata’ University of Rome. Cristina Morelli carried out the present study within the Ph.D. program in Experimental and Systems Medicine, XXXV cycle, ‘Tor Vergata’ University of Rome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Formica.

Ethics declarations

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

Vincenzo Formica, Cristina Morelli, Anna Patrikidou, Carmen Murias, Sabeeh Butt, Antonella Nardecchia, Jessica Lucchetti, Nicola Renzi, Kai-Keen Shiu, Mario Roselli, and Hendrik-Tobias Arkenau have no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formica, V., Morelli, C., Patrikidou, A. et al. Gastric Inflammatory Prognostic Index (GIPI) in Patients with Metastatic Gastro-Esophageal Junction/Gastric Cancer Treated with PD-1/PD-L1 Immune Checkpoint Inhibitors. Targ Oncol 15, 327–336 (2020). https://doi.org/10.1007/s11523-020-00723-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-020-00723-z

Navigation