Skip to main content
Log in

Through-space charge transfer blue polymers containing acridan donor and oxygen-bridged triphenylboron acceptor for highly efficient solution-processed organic light-emitting diodes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Three kinds of through-space charge transfer (TSCT) blue polymers containing non-conjugated polystyrene backbone together with spatially-separated acridan donor and oxygen-bridged triphenylboron acceptors having different substituents of tert-butyl, hydrogen and fluorine are designed and synthesized. The designed TSCT blue polymers possess photoluminescence quantum yields up to 70% in solid-state film, single-triplet energy splitting below 0.1 eV, and typical thermally activated delayed fluorescence (TADF) effect. Meanwhile, the resulting polymers exhibit aggregation-induced emission (AIE) effect with emission intensity increased by up to ~27 folds from solution to aggregation state. By changing the substituent of acceptors to tune the charge transfer strength, blue emission with peaks from 444 to 480 nm can be realized for the resulting polymers. Solution-processed organic light-emitting diodes based on the polymers exhibit excellent device performance with Commission Internationale de L’Eclairage (CIE) coordinates of (0.16, 0.27), together with the maximum luminous efficiency of 30.7 cd A-1 and maximum external quantum efficiency of 15.0%, which is the best device efficiency for blue TADF polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brédas JL, Beljonne D, Coropceanu V, Cornil J. Chem Rev, 2004, 104: 4971–5004

    PubMed  Google Scholar 

  2. Liu Y, Li C, Ren Z, Yan S, Bryce MR. Nat Rev Mater, 2018, 3: 18020

    CAS  Google Scholar 

  3. Ying L, Ho CL, Wu H, Cao Y, Wong WY. Adv Mater, 2014, 26: 2459–2473

    PubMed  CAS  Google Scholar 

  4. Wang S, Zhang H, Zhang B, Xie Z, Wong WY. Mater Sci Eng-R-Rep, 2020, 140: 100547

    Google Scholar 

  5. Xie Y, Li Z. J Polym Sci Part A-Polym Chem, 2017, 55: 575–584

    CAS  Google Scholar 

  6. Huang T, Jiang W, Duan L. J Mater Chem C, 2018, 6: 5577–5596

    CAS  Google Scholar 

  7. Shao S, Ding J, Wang L. Acta Polym Sin, 2018: 198–216

    Google Scholar 

  8. Zou Y, Gong S, Xie G, Yang C. Adv Opt Mater, 2018, 6: 1800568

    Google Scholar 

  9. Huang F, Bo Z, Geng Y, Wang X, Wang L, Ma Y, Hou J, Hu W, Pei J, Dong H, Wang S, Li Z, Shuai Z, Li Y, Cao Y. Acta Polym Sin, 2019, 50: 988–1046

    Google Scholar 

  10. Jhulki S, Cooper MW, Barlow S, Marder SR. Mater Chem Front, 2019, 3: 1699–1721

    CAS  Google Scholar 

  11. Wei Q, Ge Z, Voit B. Macromol Rapid Commun, 2019, 40: 1800570

    Google Scholar 

  12. Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C. Appl Phys Lett, 2011, 98: 083302

    Google Scholar 

  13. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234–238

    PubMed  CAS  Google Scholar 

  14. Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv Mater, 2014, 26: 7931–7958

    PubMed  CAS  Google Scholar 

  15. Zhang D, Duan L, Li C, Li Y, Li H, Zhang D, Qiu Y. Adv Mater, 2014, 26: 5050–5055

    PubMed  CAS  Google Scholar 

  16. Wong MY, Zysman-Colman E. Adv Mater, 2017, 29: 1605444

    Google Scholar 

  17. Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Chem Soc Rev, 2017, 46: 915–1016

    PubMed  CAS  Google Scholar 

  18. Cai X, Su SJ. Adv Funct Mater, 2018, 28: 1802558

    Google Scholar 

  19. Sarma M, Wong KT. ACS Appl Mater Interfaces, 2018, 10: 19279–19304

    PubMed  CAS  Google Scholar 

  20. Jeon SK, Lee HL, Yook KS, Lee JY. Adv Mater, 2019, 31: 1803524

    Google Scholar 

  21. Albrecht K, Matsuoka K, Fujita K, Yamamoto K. Angew Chem Int Ed, 2015, 54: 5677–5682

    CAS  Google Scholar 

  22. Nikolaenko AE, Cass M, Bourcet F, Mohamad D, Roberts M. Adv Mater, 2015, 27: 7236–7240

    PubMed  CAS  Google Scholar 

  23. Lee SY, Yasuda T, Komiyama H, Lee J, Adachi C. Adv Mater, 2016, 28: 4019–4024

    PubMed  CAS  Google Scholar 

  24. Nobuyasu RS, Ren Z, Griffiths GC, Batsanov AS, Data P, Yan S, Monkman AP, Bryce MR, Dias FB. Adv Opt Mater, 2016, 4: 597–607

    CAS  Google Scholar 

  25. Freeman DME, Musser AJ, Frost JM, Stern HL, Forster AK, Fallon KJ, Rapidis AG, Cacialli F, McCulloch I, Clarke TM, Friend RH, Bronstein H. J Am Chem Soc, 2017, 139: 11073–11080

    PubMed  CAS  Google Scholar 

  26. Wei Q, Kleine P, Karpov Y, Qiu X, Komber H, Sahre K, Kiriy A, Lygaitis R, Lenk S, Reineke S, Voit B. Adv Funct Mater, 2017, 27: 1605051

    Google Scholar 

  27. Xie G, Luo J, Huang M, Chen T, Wu K, Gong S, Yang C. Adv Mater, 2017, 29: 1604223

    Google Scholar 

  28. Hu Y, Cai W, Ying L, Chen D, Yang X, Jiang XF, Su S, Huang F, Cao Y. J Mater Chem C, 2018, 6: 2690–2695

    CAS  Google Scholar 

  29. Kim HJ, Lee C, Godumala M, Choi S, Park SY, Cho MJ, Park S, Choi DH. Polym Chem, 2018, 9: 1318–1326

    CAS  Google Scholar 

  30. Yang Y, Wang S, Zhu Y, Wang Y, Zhan H, Cheng Y. Adv Funct Mater, 2018, 28: 1706916

    Google Scholar 

  31. Li C, Xu Y, Liu Y, Ren Z, Ma Y, Yan S. Nano Energy, 2019, 65: 104057

    CAS  Google Scholar 

  32. Shao S, Hu J, Wang X, Wang L, Jing X, Wang F. J Am Chem Soc, 2017, 139: 17739–17742

    PubMed  CAS  Google Scholar 

  33. Hu J, Li Q, Wang X, Shao S, Wang L, Jing X, Wang F. Angew Chem Int Ed, 2019, 58: 8405–8409

    CAS  Google Scholar 

  34. Chen F, Hu J, Wang X, Shao S, Wang L, Jing X, Wang F. Front Chem, 2019, 7: 854

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Kawasumi K, Wu T, Zhu T, Chae HS, Van Voorhis T, Baldo MA, Swager TM. J Am Chem Soc, 2015, 137: 11908–11911

    PubMed  CAS  Google Scholar 

  36. Tsujimoto H, Ha DG, Markopoulos G, Chae HS, Baldo MA, Swager TM. J Am Chem Soc, 2017, 139: 4894–4900

    PubMed  CAS  Google Scholar 

  37. Spuling E, Sharma N, Samuel IDW, Zysman-Colman E, Bräse S. Chem Commun, 2018, 54: 9278–9281

    CAS  Google Scholar 

  38. Auffray M, Kim DH, Kim JU, Bencheikh F, Kreher D, Zhang Q, D’Aléo A, Ribierre JC, Mathevet F, Adachi C. Chem Asian J, 2019, 14: 1921–1925

    PubMed  CAS  Google Scholar 

  39. Wang Y, Huang C, Ye H, Zhong C, Khan A, Yang S, Fung M, Jiang Z, Adachi C, Liao L. Adv Opt Mater, 2020, 8: 1901150

    CAS  Google Scholar 

  40. Zhang P, Zeng J, Guo J, Zhen S, Xiao B, Wang Z, Zhao Z, Tang BZ. Front Chem, 2019, 7: 199

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Zheng X, Huang R, Zhong C, Xie G, Ning W, Huang M, Ni F, Dias FB, Yang C. Adv Sci, 2020, 7: 1902087

    CAS  Google Scholar 

  42. Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T. Nat Photon, 2019, 13: 678–682

    CAS  Google Scholar 

  43. Ahn DH, Kim SW, Lee H, Ko IJ, Karthik D, Lee JY, Kwon JH. Nat Photon, 2019, 13: 540–546

    CAS  Google Scholar 

  44. Meng G, Chen X, Wang X, Wang N, Peng T, Wang S. Adv Opt Mater, 2019, 7: 1900130

    Google Scholar 

  45. Song D, Yu Y, Yue L, Zhong D, Zhang Y, Yang X, Sun Y, Zhou G, Wu Z. J Mater Chem C, 2019, 7: 11953–11963

    CAS  Google Scholar 

  46. Hirai H, Nakajima K, Nakatsuka S, Shiren K, Ni J, Nomura S, Ikuta T, Hatakeyama T. Angew Chem Int Ed, 2015, 54: 13581–13585

    CAS  Google Scholar 

  47. Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1740–1741

    Google Scholar 

  48. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    PubMed  CAS  Google Scholar 

  49. Li J, Shen P, Zhao Z, Tang BZ. CCS Chem, 2019, 1: 181–196

    CAS  Google Scholar 

  50. Mamada M, Ergun S, Pérez-Bolívar C, Anzenbacher Jr. P. Appl Phys Lett, 2011, 98: 073305

    Google Scholar 

  51. Su SJ, Chiba T, Takeda T, Kido J. Adv Mater, 2008, 20: 2125–2130

    CAS  Google Scholar 

  52. Zeng X, Luo J, Zhou T, Chen T, Zhou X, Wu K, Zou Y, Xie G, Gong S, Yang C. Macromolecules, 2018, 51: 1598–1604

    CAS  Google Scholar 

  53. Li C, Ren Z, Sun X, Li H, Yan S. Macromolecules, 2019, 52: 2296–2303

    CAS  Google Scholar 

  54. Liu X, Rao J, Li X, Wang S, Ding J, Wang L. iScience, 2019, 15: 147–155

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Gomard G, Preinfalk JB, Egel A, Lemmer U. J Photon Energy, 2016, 6: 030901

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51833009, 21975247, 51573182), the National Program on Key Basic Research Project of China (2015CB655000) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2015180).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiyang Shao or Lixiang Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2020_9750_MOESM1_ESM.pdf

Through-space charge transfer blue polymers containing acridan donor and oxygen-bridged triphenylboron acceptor for highly efficient solution-processed organic light-emitting diodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Hu, J., Wang, X. et al. Through-space charge transfer blue polymers containing acridan donor and oxygen-bridged triphenylboron acceptor for highly efficient solution-processed organic light-emitting diodes. Sci. China Chem. 63, 1112–1120 (2020). https://doi.org/10.1007/s11426-020-9750-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9750-9

Keywords

Navigation