Skip to main content
Log in

Vapor-assisted epitaxial growth of porphyrin-based MOF thin film for nonlinear optical limiting

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Fabrication of metal-organic frameworks (MOFs) thin films has been an efficient way to expand their functionalities and applications. Here, we use the vapor-assisted deposition (VAD) method to epitaxially grow a porphyrin-based MOF PCN-222 film. That is, vapor source assists to deposit pre-treated precursor solution on quartz substrate to form a continuous PCN-222 film. Furthermore, utilizing the post-treated encapsulation of functional carbon-based nanoparticles, the carbon nanodots (CND) and Pt doped CND (Pt/CND) are well loaded into the pores of PCN-222 film, the size (~3.1 nm) of which is highly close to the pore size of the corresponding MOF (~3.7 nm). The Z-scan results reveal that PCN-222 film exhibits high reverse saturable absorption. In addition, encapsulation of carbon based nanodots into PCN-222 film could enhance the nonlinear optical limiting effect benefiting from the host-guest combination. This study serves to present both the available toolbox of thin film preparation and high potential for precise synthetic nanocomposite films in optical limiting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wiecha PR, Lecestre A, Mallet N, Larrieu G. Nat Nanotech, 2019, 14: 237–244

    CAS  Google Scholar 

  2. Evans RFL. Nat Photon, 2016, 10: 622–623

    CAS  Google Scholar 

  3. Businger M, Tiranov A, Kaczmarek KT, Welinski S, Zhang Z, Ferrier A, Goldner P, Afzelius M. Phys Rev Lett, 2020, 124: 053606

    PubMed  CAS  Google Scholar 

  4. Gentili PL, Giubila MS, Germani R, Romani A, Nicoziani A, Spalletti A, Heron BM. Angew Chem Int Ed, 2017, 56: 7535–7540

    CAS  Google Scholar 

  5. Tian X, Wei R, Guo Q, Zhao YJ, Qiu J. Adv Mater, 2018, 30: 1801638

    Google Scholar 

  6. Muthukumar VS, Reppert J, Sandeep CSS, Krishnan SSR, Podila R, Kuthirummal N, Sai SSS, Venkataramaniah K, Philip R, Rao AM. Optics Commun, 2010, 283: 4104–4107

    CAS  Google Scholar 

  7. Champagne B, Plaquet A, Pozzo JL, Rodriguez V, Castet F. J Am Chem Soc, 2012, 134: 8101–8103

    PubMed  CAS  Google Scholar 

  8. Säynätjoki A, Karvonen L, Rostami H, Autere A, Mehravar S, Lombardo A, Norwood RA, Hasan T, Peyghambarian N, Lipsanen H, Kieu K, Ferrari AC, Polini M, Sun Z. Nat Commun, 2017, 8: 893

    PubMed  PubMed Central  Google Scholar 

  9. Shi G, Wang Y, Zhang F, Zhang B, Yang Z, Hou X, Pan S, Poeppelmeier KR. J Am Chem Soc, 2017, 139: 10645–10648

    PubMed  CAS  Google Scholar 

  10. Timurdogan E, Poulton CV, Byrd MJ, Watts MR. Nat Photon, 2017, 11: 200–206

    CAS  Google Scholar 

  11. Rath H, Sankar J, Prabhuraja V, Chandrashekar TK, Nag A, Goswami D. J Am Chem Soc, 2005, 127: 11608–11609

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Hou X, Sun J, Liu Z, Yan C, Song W, Zhang HL, Zhou S, Shao X. Chem Commun, 2018, 54: 10981–10984

    CAS  Google Scholar 

  13. Dissanayake DMAS, Cifuentes MP, Humphrey MG. Coord Chem Rev, 2018, 375: 489–513

    CAS  Google Scholar 

  14. Tran TT, Young J, Rondinelli JM, Halasyamani PS. J Am Chem Soc, 2017, 139: 1285–1295

    PubMed  CAS  Google Scholar 

  15. Zhang R, Fan J, Zhang X, Yu H, Zhang H, Mai Y, Xu T, Wang J, Snaith HJ. ACS Photonics, 2016, 3: 371–377

    CAS  Google Scholar 

  16. Đorđević L, Marangoni T, de Leo F, Papagiannouli I, Aloukos P, Couris S, Pavoni E, Monti F, Armaroli N, Prato M, Bonifazi D. Phys Chem Chem Phys, 2016, 18: 11858–11868

    PubMed  Google Scholar 

  17. Li S, Dong Y, Zhou J, Liu Y, Wang J, Gao X, Han Y, Qi P, Wang B. Energy Environ Sci, 2018, 11: 1318–1325

    CAS  Google Scholar 

  18. Wang SS, Jiao L, Qian Y, Hu WC, Xu GY, Wang C, Jiang HL. Angew Chem Int Ed, 2019, 58: 10713–10717

    CAS  Google Scholar 

  19. Long JR, Yaghi OM. Chem Soc Rev, 2009, 38: 1213–1214

    PubMed  CAS  Google Scholar 

  20. Kang XM, Shi Y, Cao CS, Zhao B. Sci China Chem, 2019, 62: 622–628

    CAS  Google Scholar 

  21. Medishetty R, Zaręba JK, Mayer D, Samoć M, Fischer RA. Chem Soc Rev, 2017, 46: 4976–5004

    PubMed  CAS  Google Scholar 

  22. Chen L, Luque R, Li Y. Chem Soc Rev, 2017, 46: 4614–4630

    PubMed  CAS  Google Scholar 

  23. Wang Y, Zhao M, Ping J, Chen B, Cao X, Huang Y, Tan C, Ma Q, Wu S, Yu Y, Lu Q, Chen J, Zhao W, Ying Y, Zhang H. Adv Mater, 2016, 28: 4149–4155

    PubMed  CAS  Google Scholar 

  24. Chen Y, Chen F, Zhang S, Cai Y, Cao S, Li S, Zhao W, Yuan S, Feng X, Cao A, Ma X, Wang B. J Am Chem Soc, 2017, 139: 16482–16485

    PubMed  CAS  Google Scholar 

  25. Aguila B, Sun Q, Wang X, O’Rourke E, Al-Enizi AM, Nafady A, Ma S. Angew Chem Int Ed, 2018, 57: 10107–10111

    CAS  Google Scholar 

  26. Zacher D, Shekhah O, Wöll C, Fischer RA. Chem Soc Rev, 2009, 38: 1418–1429

    PubMed  CAS  Google Scholar 

  27. Li X. Matter, 2019, 1: 1112

    CAS  Google Scholar 

  28. Li H, He H, Yu J, Cui Y, Yang Y, Qian G. Sci China Chem, 2019, 62: 987–993

    CAS  Google Scholar 

  29. Li DJ, Gu ZG, Zhang J. Chem Sci, 2020, 11: 1935–1942

    CAS  Google Scholar 

  30. Virmani E, Rotter JM, Mähringer A, von Zons T, Godt A, Bein T, Wuttke S, Medina DD. J Am Chem Soc, 2018, 140: 4812–4819

    PubMed  CAS  Google Scholar 

  31. Luo J, Li Y, Zhang H, Wang A, Lo WS, Dong Q, Wong N, Povinelli C, Shao Y, Chereddy S, Wunder S, Mohanty U, Tsung CK, Wang D. Angew Chem Int Ed, 2019, 58: 15313–15317

    CAS  Google Scholar 

  32. Haldar R, Heinke L, Wöll C. Adv Mater, 2019, 1905227

    Google Scholar 

  33. Liu X, Kozlowska M, Okkali T, Wagner D, Higashino T, Brenner-Weiß G, Marschner SM, Fu Z, Zhang Q, Imahori H, Bräse S, Wenzel W, Wöll C, Heinke L. Angew Chem Int Ed, 2019, 58: 9590–9595

    CAS  Google Scholar 

  34. Li DJ, Gu ZG, Zhang W, Kang Y, Zhang J. J Mater Chem A, 2017, 5: 20126–20130

    CAS  Google Scholar 

  35. Feng D, Gu ZY, Li JR, Jiang HL, Wei Z, Zhou HC. Angew Chem Int Ed, 2012, 51: 10307–10310

    CAS  Google Scholar 

  36. Shultz AM, Farha OK, Hupp JT, Nguyen SBT. J Am Chem Soc, 2009, 131: 4204–4205

    PubMed  CAS  Google Scholar 

  37. Jiang HL, Feng D, Wang K, Gu ZY, Wei Z, Chen YP, Zhou HC. J Am Chem Soc, 2013, 135: 13934–13938

    PubMed  CAS  Google Scholar 

  38. Gong X, Noh H, Gianneschi NC, Farha OK. J Am Chem Soc, 2019, 141: 6146–6151

    PubMed  CAS  Google Scholar 

  39. Niu RJ, Zhou WF, Liu Y, Yang JY, Zhang WH, Lang JP, Young DJ. Chem Commun, 2019, 55: 4873–4876

    CAS  Google Scholar 

  40. Borges DD, Devautour-Vinot S, Jobic H, Ollivier J, Nouar F, Semino R, Devic T, Serre C, Paesani F, Maurin G. Angew Chem Int Ed, 2016, 55: 3919–3924

    CAS  Google Scholar 

  41. Deria P, Gómez-Gualdrón DA, Hod I, Snurr RQ, Hupp JT, Farha OK. J Am Chem Soc, 2016, 138: 14449–14457

    PubMed  CAS  Google Scholar 

  42. Hashem T, Valadez Sánchez EP, Weidler PG, Gliemann H, Alkordi MH, Wöll C. ChemistryOpen, 2020, 9: 523

    CAS  Google Scholar 

  43. Morris W, Volosskiy B, Demir S, Gándara F, McGrier PL, Furukawa H, Cascio D, Stoddart JF, Yaghi OM. Inorg Chem, 2012, 51: 6443–6445

    PubMed  CAS  Google Scholar 

  44. Liu J, Zhou W, Liu J, Fujimori Y, Higashino T, Imahori H, Jiang X, Zhao J, Sakurai T, Hattori Y, Matsuda W, Seki S, Garlapati SK, Dasgupta S, Redel E, Sun L, Wöll C. J Mater Chem A, 2016, 4: 12739–12747

    CAS  Google Scholar 

  45. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, van Stryland EW. IEEE J Quantum Electron, 1990, 26: 760–769

    CAS  Google Scholar 

  46. Gu ZG, Li DJ, Zheng C, Kang Y, Wöll C, Zhang J. Angew Chem Int Ed, 2017, 56: 6853–6858

    CAS  Google Scholar 

  47. Pan H, Chen W, Feng YP, Ji W, Lin J. Appl Phys Lett, 2006, 88: 223106

    Google Scholar 

  48. Varma SJ, Kumar J, Liu Y, Layne K, Wu J, Liang C, Nakanishi Y, Aliyan A, Yang W, Ajayan PM, Thomas J. Adv Opt Mater, 2017, 5: 1700713

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000), the National Key Research and Development Program of China (2018YFA0208600), the National Natural Science Foundation of China (21872148, 21601189) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2018339).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Gang Gu or Jian Zhang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, YH., Gu, ZG. & Zhang, J. Vapor-assisted epitaxial growth of porphyrin-based MOF thin film for nonlinear optical limiting. Sci. China Chem. 63, 1059–1065 (2020). https://doi.org/10.1007/s11426-020-9759-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9759-6

Keywords

Navigation