Skip to main content
Log in

Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Recent advances in material design for organic solar cells (OSCs) are primarily focused on developing near-infrared non-fullerene acceptors, typically A-DA′D-A type acceptors (where A abbreviates an electron-withdrawing moiety and D, an electron-donor moiety), to achieve high external quantum efficiency while maintaining low voltage loss. However, the charge transport is still constrained by unfavorable molecular conformations, resulting in high energetic disorder and limiting the device performance. Here, a facile design strategy is reported by introducing the “wing” (alkyl chains) at the terminal of the DA′D central core of the A-DA′D-A type acceptor to achieve a favorable and ordered molecular orientation and therefore facilitate charge carrier transport. Benefitting from the reduced disorder, the electron mobilities could be significantly enhanced for the “wing”-containing molecules. By carefully changing the length of alkyl chains, the mobility of acceptor has been tuned to match with that of donor, leading to a minimized charge imbalance factor and a high fill factor (FF). We further provide useful design strategies for highly efficient OSCs with high FF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    CAS  Google Scholar 

  2. Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161

    CAS  Google Scholar 

  3. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Chem Rev, 2015, 115: 12666–12731

    PubMed  CAS  Google Scholar 

  4. Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192–209

    CAS  Google Scholar 

  5. Kaltenbrunner M, White MS, Głowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S. Nat Commun, 2012, 3: 770

    PubMed  PubMed Central  Google Scholar 

  6. Brabec CJ, Heeney M, McCulloch I, Nelson J. Chem Soc Rev, 2011, 40: 1185–1199

    PubMed  CAS  Google Scholar 

  7. Peet J, Heeger AJ, Bazan GC. Acc Chem Res, 2009, 42: 1700–1708

    PubMed  CAS  Google Scholar 

  8. Thompson BC, Fréchet JMJ. Angew Chem Int Ed, 2008, 47: 58–77

    CAS  Google Scholar 

  9. Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem Rev, 2016, 116: 7397–7457

    PubMed  CAS  Google Scholar 

  10. Zhou H, Yang L, You W. Macromolecules, 2012, 45: 607–632

    CAS  Google Scholar 

  11. Wu JS, Cheng SW, Cheng YJ, Hsu CS. Chem Soc Rev, 2015, 44: 1113–1154

    PubMed  CAS  Google Scholar 

  12. He Y, Li Y. Phys Chem Chem Phys, 2011, 13: 1970–1983

    PubMed  CAS  Google Scholar 

  13. He Y, Chen HY, Hou J, Li Y. J Am Chem Soc, 2010, 132: 1377–1382

    PubMed  CAS  Google Scholar 

  14. Cheng YJ, Hsieh CH, He Y, Hsu CS, Li Y. J Am Chem Soc, 2010, 132: 17381–17383

    PubMed  CAS  Google Scholar 

  15. Yuan J, Qiu L, Zhang Z, Li Y, He Y, Jiang L, Zou Y. Chem Commun, 2016, 52: 6881–6884

    CAS  Google Scholar 

  16. Liu D, Wang J, Gu C, Li Y, Bao X, Yang R. Adv Mater, 2018, 30: 1705870

    Google Scholar 

  17. Bin H, Zhang ZG, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 4657–4664

    PubMed  CAS  Google Scholar 

  18. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    CAS  Google Scholar 

  19. Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142

    CAS  Google Scholar 

  20. Xia T, Cai Y, Fu H, Sun Y. Sci China Chem, 2019, 62: 662–668

    CAS  Google Scholar 

  21. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    PubMed  CAS  Google Scholar 

  22. Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2019, 63: 265–271

    Google Scholar 

  23. Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363–369

    PubMed  CAS  Google Scholar 

  24. Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim JY, Sun Y, Wang Z, Heeger AJ. J Am Chem Soc, 2016, 138: 375–380

    PubMed  CAS  Google Scholar 

  25. He D, Zhao F, Xin J, Rech JJ, Wei Z, Ma W, You W, Li B, Jiang L, Li Y, Wang C. Adv Energy Mater, 2018, 8: 1802050

    Google Scholar 

  26. Xiao B, Tang A, Zhang J, Mahmood A, Wei Z, Zhou E. Adv Energy Mater, 2017, 7: 1602269

    Google Scholar 

  27. Sun H, Liu T, Yu J, Lau TK, Zhang G, Zhang Y, Su M, Tang Y, Ma R, Liu B, Liang J, Feng K, Lu X, Guo X, Gao F, Yan H. Energy Environ Sci, 2019, 12: 3328–3337

    CAS  Google Scholar 

  28. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    CAS  Google Scholar 

  29. Yuan J, Zhang Y, Zhou L, Zhang C, Lau TK, Zhang G, Lu X, Yip HL, So SK, Beaupré S, Mainville M, Johnson PA, Leclerc M, Chen H, Peng H, Li Y, Zou Y. Adv Mater, 2019, 31: e1807577

    PubMed  Google Scholar 

  30. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    PubMed  CAS  Google Scholar 

  31. Zhang Y, Yao H, Zhang S, Qin Y, Zhang J, Yang L, Li W, Wei Z, Gao F, Hou J. Sci China Chem, 2018, 61: 1328–1337

    CAS  Google Scholar 

  32. Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang W, Wang R, Meng D, Gao F, Yang Y. Nat Commun, 2019, 10: 570

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H. Sci China Chem, 2020, 63: 325–330

    CAS  Google Scholar 

  34. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    CAS  Google Scholar 

  35. Luo Z, Sun R, Zhong C, Liu T, Zhang G, Zou Y, Jiao X, Min J, Yang C. Sci China Chem, 2020, 63: 361–369

    CAS  Google Scholar 

  36. Bässler H. Phys Stat Sol (b), 1993, 175: 15–56

    Google Scholar 

  37. Shi X, Nadazdy V, Perevedentsev A, Frost JM, Wang X, von Hauff E, MacKenzie RCI, Nelson J. Phys Rev X, 2019, 9: 021038

    CAS  Google Scholar 

  38. Mendels D, Tessler N. Sci Rep, 2016, 6: 29092

    PubMed  PubMed Central  Google Scholar 

  39. Collins SD, Proctor CM, Ran NA, Nguyen TQ. Adv Energy Mater, 2016, 6: 1501721

    Google Scholar 

  40. Venkateshvaran D, Nikolka M, Sadhanala A, Lemaur V, Zelazny M, Kepa M, Hurhangee M, Kronemeijer AJ, Pecunia V, Nasrallah I, Romanov I, Broch K, McCulloch I, Emin D, Olivier Y, Cornil J, Beljonne D, Sirringhaus H. Nature, 2014, 515: 384–388

    PubMed  CAS  Google Scholar 

  41. Zhang W, Smith J, Hamilton R, Heeney M, Kirkpatrick J, Song K, Watkins SE, Anthopoulos T, McCulloch I. J Am Chem Soc, 2009, 131: 10814–10815

    PubMed  CAS  Google Scholar 

  42. Dong T, Lv L, Feng L, Xia Y, Deng W, Ye P, Yang B, Ding S, Facchetti A, Dong H, Huang H. Adv Mater, 2017, 29: 1606025

    Google Scholar 

  43. Nikolka M, Hurhangee M, Sadhanala A, Chen H, McCulloch I, Sirringhaus H. Adv Electron Mater, 2018, 4: 1700410

    Google Scholar 

  44. Bristow H, Thorley KJ, White AJP, Wadsworth A, Babics M, Hamid Z, Zhang W, Paterson AF, Kosco J, Panidi J, Anthopoulos TD, McCulloch I. Adv Electron Mater, 2019, 5: 1900344

    CAS  Google Scholar 

  45. Karki A, Wetzelaer G-AH, Reddy GNM, Nádaždy V, Seifrid M, Schauer F, Bazan GC, Chmelka BF, Blom PWM, Nguyen T. Adv Funct Mater, 2019, 29: 1901109

    Google Scholar 

  46. Wang R, Yuan J, Wang R, Han G, Huang T, Huang W, Xue J, Wang HC, Zhang C, Zhu C, Cheng P, Meng D, Yi Y, Wei KH, Zou Y, Yang Y. Adv Mater, 2019, 31: 1904215

    CAS  Google Scholar 

  47. Zheng Z, Hu Q, Zhang S, Zhang D, Wang J, Xie S, Wang R, Qin Y, Li W, Hong L, Liang N, Liu F, Zhang Y, Wei Z, Tang Z, Russell TP, Hou J, Zhou H. Adv Mater, 2018, 30: 1801801

    Google Scholar 

  48. Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y. Nat Photonics, 2020, doi: 101038/s41566-019-0573-5

    Google Scholar 

  49. Gao H, Sun Y, Cai Y, Wan X, Meng L, Ke X, Li S, Zhang Y, Xia R, Zheng N, Xie Z, Li C, Zhang M, Yip H, Cao Y, Chen Y. Adv Energy Mater, 2019, 9: 1901024

    Google Scholar 

  50. Zhang Z, Yu J, Yin X, Hu Z, Jiang Y, Sun J, Zhou J, Zhang F, Russell TP, Liu F, Tang W. Adv Funct Mater, 2018, 28: 1705095

    Google Scholar 

  51. Yu ZP, Liu ZX, Chen FX, Qin R, Lau TK, Yin JL, Kong X, Lu X, Shi M, Li CZ, Chen H. Nat Commun, 2019, 10: 2152

    PubMed  PubMed Central  Google Scholar 

  52. Kronemeijer AJ, Pecunia V, Venkateshvaran D, Nikolka M, Sadhanala A, Moriarty J, Szumilo M, Sirringhaus H. Adv Mater, 2014, 26: 728–733

    PubMed  CAS  Google Scholar 

  53. Perdigón-Toro L, Zhang H, Markina A, Yuan J, Hosseini S, Wolff C, Zuo G, Stolterfoht M, Zou Y, Gao F, Andrienko D, Shoaee S, Neher D. Adv Mater, 2020, doi: 101002/adma201906763

    Google Scholar 

  54. Ho CHY, Cheung SH, Li HW, Chiu KL, Cheng Y, Yin H, Chan MH, So F, Tsang SW, So SK. Adv Energy Mater, 2017, 7: 1602360

    Google Scholar 

  55. Yin H, Bi P, Cheung SH, Cheng WL, Chiu KL, Ho CHY, Li HW, Tsang SW, Hao X, So SK. Sol RRL, 2018, 2: 1700239

    Google Scholar 

  56. Pasveer WF, Cottaar J, Tanase C, Coehoorn R, Bobbert PA, Blom PWM, de Leeuw DM, Michels MAJ. Phys Rev Lett, 2005, 94: 206601

    PubMed  CAS  Google Scholar 

  57. Lee HKH, Li Z, Constantinou I, So F, Tsang SW, So SK. Adv Energy Mater, 2014, 4: 1400768

    Google Scholar 

  58. Borsenberger PM, Bässler H. J Chem Phys, 1991, 95: 5327–5331

    CAS  Google Scholar 

  59. Yu R, Yao H, Cui Y, Hong L, He C, Hou J. Adv Mater, 2019, 31: 1902302

    Google Scholar 

  60. Zhou Z, Xu S, Song J, Jin Y, Yue Q, Qian Y, Liu F, Zhang F, Zhu X. Nat Energy, 2018, 3: 952–959

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research & Development Projects of China (2017YFA0206600), the National Natural Science Foundation of China (21875286), Science Fund for Distinguished Young Scholars of Hunan Province (2017JJ1029), Innovation-Driven Project of Central South University (2020CX001), and the Research Committee of HKBU (RC-ICRS/15-16/4A-SSK, FRG/16-17/077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingping Zou.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Zhang, C., Chen, H. et al. Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Sci. China Chem. 63, 1159–1168 (2020). https://doi.org/10.1007/s11426-020-9747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9747-9

Keywords

Navigation