Skip to main content
Log in

Improved air-gap flux in axial flux induction machine through shaping of radial slot opening

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Axial flux machines (AFM) have inherent non-uniform flux density distribution in radial direction leading to improper utilisation of iron part. The objective of this paper is to shape the edges of tooth lamination along radial direction to achieve uniformity in radial flux density distribution using multi-slice analytical approach. The machine considered is an axial flux induction machine (AFIM) with single stator and single rotor. The machine’s core and tooth are laminated perpendicular to each other and the approach makes use of multiple 2-D non-linear lumped parameter flux models along the radial direction representing each tooth lamination. For a given magneto-motive force, the laminations provide many parallel paths. Effective air gap length which is a function of tooth opening is adjusted to level air-gap flux density. The process results in further improvement in net flux per pole. The results of performance enhancement are validated through analytical equations, quasi 3-D FEA, 3-D FEA and a 3 kVA laboratory prototype machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

Similar content being viewed by others

References

  1. Chan C C 1987 Axial-field electrical machines-design and applications. IEEE Trans. Energy Convers. 294-300

  2. Campbell P 1975 The magnetic circuit of an axial field D.C. electrical machine. IEEE Trans. Magn. 5: 1541–1543

    Article  Google Scholar 

  3. Cavagnino A, Lazzari M, Profumo F, Sen and Tenconi A 2002 A comparison between the axial flux and the radial flux structures for PM synchronous motors IEEE Trans. Ind. Appl. 38: 1517

    Article  Google Scholar 

  4. Sitapati K and Krishnan K 2001 Performance comparisons of radial and axial field permanent magnet brushless machines IEEE Trans. Ind. Appl. 37: 1219.

    Article  Google Scholar 

  5. Ito M, Arai K, Takahashi N and Hiwaki H 1988 Magnetically anisotropic solid rotor of an induction motor IEEE Trans. Energy Convers. 3: 427–432

    Article  Google Scholar 

  6. Jack A G, Mecrow B C, Nord G and Dickinson P G 2005 Axial flux motors using compacted insulated iron powder and laminations—design and test results. In: IEEE International Conference on Electric Machines and Drives, pp 378–385

  7. Boules N 1984 Two-dimensional field analysis of cylindrical machines with permanent magnet excitation. IEEE Trans. Ind. Appl. 20: 1267–1277

    Article  Google Scholar 

  8. Mirzaei M, Mirsalim M and Abdollahi S E 2007 Analytical modeling of axial air gap solid rotor induction machines using a quasi-three dimensional method. IEEE Trans. Magn. 43: 3237–3242

    Article  Google Scholar 

  9. Tiegna H, Amara Y and Barakat G 2014 Study of cogging torque in axial flux permanent magnet machines using an analytical model. IEEE Trans. Mag. 50: 845

    Article  Google Scholar 

  10. Azzouzi J, Barakat G and Dakyo B 2005 Quasi-3-D analytical modeling of the magnetic field of an axial flux permanent-magnet synchronous machine. IEEE Trans. Energy Convers. 20: 746–752

    Article  Google Scholar 

  11. Blessing Paul Benet A and Umamaheswari B 2018 Accurate determination of magnetic flux in axial flux induction machine using multi-slice approach and basic design equations J. Inst. Eng. India Ser. B. 41–51

  12. Tiegna H, Amara Y, and Barakat G 2014 Study of cogging torque in axial flux permanent magnet machines using an analytical model. IEEE Trans. Magn. 50: 2

    Article  Google Scholar 

  13. Stankovic A V, Benedict E L, John V and Lipo T A 2003 A novel method for measuring induction machine magnetizing inductance. IEEE Trans. Ind. Appl. 39: 234–238

    Google Scholar 

  14. Petrov I, Lindh P, Peng W-Y, Jang C-S, Yang H-P and Pyrhönen J 2016 Improvement of axial flux single-rotor single-stator induction machine performance by applying semi-magnetic wedges. IEEE Trans. Magan. 1795–1800

  15. Rallabandi V, Taranand N and Ionel D M 2017 Multilayer concentrated windings for axial flux PM machines. IEEE Trans. Magn. 53: 8103104

    Google Scholar 

  16. Vansompel H, Sergeant P, Dupre L and Van den Bossche A 2014 Axial-flux P M machines with variable air gap. IEEE Trans. Ind. Electron. 61: 730–737

    Article  Google Scholar 

  17. Mollaeian A, Ghosh E, Dhulipati H, Tjong J and Kar N C 2017 3-D sub-domain analytical model to calculate magnetic flux density in induction machines with semiclosed slots under no-load condition. IEEE Trans. Magn. 53: 7206905

    Article  Google Scholar 

  18. Mohammed F H, Khatab, Zhu Z Q, Li H Y and Liu Y 2018 Comparative study of novel axial flux magnetically geared and conventional axial flux permanent magnet machines. CES Trans. Electr. Mach. Syst. 2: 392–398

  19. Guo B, Huang Y, Peng F and Dong J 2019 General analytical modeling for magnet demagnetization in surface mounted permanent magnet machines. IEEE Trans. Ind. Electron. 66: 5830–5838

    Article  Google Scholar 

  20. Yeo H-K, Lim D-K and Jung H-K 2019 Magnetic equivalent circuit model considering the overhang structure of an interior permanent magnet-machine. IEEE Trans. Magn. 55: 8201404

    Article  Google Scholar 

  21. Boldea I and ANasar S 2002 The induction machines design handbook. CRC Press, Special Indian Edition

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BLESSING PAUL BENET ARTHUR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ARTHUR, B.P.B., BASKARAN, U. Improved air-gap flux in axial flux induction machine through shaping of radial slot opening. Sādhanā 45, 134 (2020). https://doi.org/10.1007/s12046-020-01337-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-020-01337-x

Keywords

Navigation