Skip to main content
Log in

A novel driving scheme for oil-splitting suppression in Electrowetting display

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

To achieve quick-response Electrowetting displays with an accurate gray level performance for image applications, oil-splitting is an important issue which needs to be optimized. The study found that oil patterns affect the pixel aperture ratio. This paper proposes a novel driving waveform that can suppress an oil-splitting phenomenon without affecting the refresh rate. The experimental results show that the proposed driving scheme can improve the oil-splitting problem and increase the aperture ratio of pixels. This is of great practical significance for improving the Electrowetting display application. Moreover, a portable and highly integrated driving waveform control system is implemented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Heikenfeld, J., Steckl, A.J.: Electrowetting light valves with greater than 80% transmission, unlimited view angle, and video response. SID Symp. Digest 36, 1674–1677 (2005)

    Article  Google Scholar 

  2. Beni, G., Hackwood, S.: Electrowetting displays. Appl. Phys. Lett. 38, 207–209 (1981)

    Article  ADS  Google Scholar 

  3. Hayes, R.A., Feenstra, B.J.: Video-speed electronic paper based on electrowetting. Nature 425, 383–385 (2003)

    Article  ADS  Google Scholar 

  4. Roques-Carmes, T., et al.: Liquid behavior inside a reflective display pixel based on electrowetting. J. Appl. Phys. 95, 4389–4396 (2004)

    Article  ADS  Google Scholar 

  5. Blankenbach, K., et al.: Bistable electrowetting displays. Int. Soc. Opt. Eng. 7956, 237–244 (2011)

    Google Scholar 

  6. Wen, C., et al.: Self-Assembly Oil-Water Perfusion in Electrowetting Displays. J. Disp. Technol. 9(2), 122–127 (2013)

    Article  ADS  Google Scholar 

  7. Lo, K., et al.: Ink drop filling by a slot coating die for an electrowetting display panel. J. Soc. Inform. Disp. 22(7), 337–345 (2015)

    Article  Google Scholar 

  8. Roghair, I., et al.: A numerical technique to simulate display pixels based on electrowetting. Microfluid. Nanofluid. 19(2), 465–482 (2015)

    Article  Google Scholar 

  9. Falk, R.S., Walker, S.W.: A mixed finite element method for ewod that directly computes the position of the moving interface. Siam J. Numer. Anal. 51(51), 1016–1040 (2013)

    Article  MathSciNet  Google Scholar 

  10. Luo, Z., et al.: Portable multi-gray scale video playing scheme for high-performance electrowetting displays. J. Soc. Inf. Disp. 24(6), 345–354 (2016)

    Article  Google Scholar 

  11. Chiu, Y.-H., et al.: Accurate-gray-level and quick-response driving methods for high-performance electrowetting displays. J. Soc. Inform. Disp. 19(11), 741–748 (2011)

    Article  Google Scholar 

  12. Lin, S., et al.: Improvement of display performance of electrowetting displays by optimized waveforms and error diffusion. J. Soc. Inform. Disp. 27(10), 619–629 (2019)

    Article  Google Scholar 

  13. Li, X.T., Bai, P.F., Gao, J.W., et al.: Effect of pixel shape on fluid motion in an electrofluidic display. Appl. Mech. Mater. 635–637, 1159–1164 (2014)

    Article  Google Scholar 

  14. Zhou, M., Zhao, Q., Tang, B., et al.: Simplified dynamical model for optical response of electrofluidic displays. Displays 49, 26–34 (2017)

    Article  Google Scholar 

  15. Cheng, W.Y., et al.: Novel development of electrowetting display. Proc. IMID 08, 1240–1243 (2008)

    Google Scholar 

  16. Tang, B., Groenewold, J., Zhou, M., et al.: Interfacial electrofluidics in confined systems. Sci. Rep. 6, 26593 (2016)

    Article  ADS  Google Scholar 

  17. Chen, X., He, T., Jiang, H., et al.: Screen-printing fabrication of electrowetting displays based on poly (imide siloxane) and polyimide. Displays 37, 79–85 (2014)

    Article  Google Scholar 

  18. Zhang, X.M., et al.: Novel driving methods for manipulating oil motion in electrofluidic display pixels. J. Disp. Technol. 12(2), 200–205 (2016)

    Google Scholar 

  19. Dou, Y., et al.: Oil motion control by an extra pinning structure in electro-fluidic display. Sensors 18(4), 1114–1124 (2018)

    Article  MathSciNet  Google Scholar 

  20. Zhao, Q., et al.: Dynamic simulation of bistable electrofluidic device based on a combined design of electrode and wettability patterning. J. Soc. Inform. Display 26(1), 56–66 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (61871475,61471133), the Guangdong Science and Technology Plan (201905010006), the Foundation for High-level Talents in Higher Education of Guangdong Province (2017GCZX001; 2018LM2168; 2017KQNCX097), and the Guangzhou Science Research Plan (201904010233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangyin Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Fan, J., Xu, J. et al. A novel driving scheme for oil-splitting suppression in Electrowetting display. Opt Rev 27, 339–345 (2020). https://doi.org/10.1007/s10043-020-00601-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-020-00601-z

Keywords

Navigation