Skip to main content
Log in

Functional analysis of miRNAs combined with TGF-β1/Smad3 inhibitor in an intrauterine rat adhesion cell model

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we aimed to study the role of miRNAs in intrauterine adhesion (IUA) disease. An IUA cell model was constructed by TGF-β1. Smad3 inhibitor (SIS3) can inhibit the Smad3 signaling pathway and affect the role of TGF-β1; thus, it was used to identify the role of Smad3 and related miRNAs in IUA. Cell number significantly increased in the TGF-β1 group after 72 h and 96 h, respectively, compared with that in the control group (P < 0.05). However, cell proliferation was significantly decreased in the TGF-β1 + SIS3 group (P < 0.0001). Cell apoptosis was increased in the TGF-β1 + SIS3 group compared with that in the TGF-β1 group. Western Blot (WB) analysis suggested that TGF-β1 treatment could effectively increase the expression of α-SMA, COL1, Smad3, and p-Smad3, which could be inhibited by SIS3 treatment. A total of 235 and 530 differentially expressed miRNAs in the TGF-β1 + SIS3 group were significantly up- and downregulated compared with those in the TGF-β1 group, respectively. These differentially expressed miRNAs were enriched in the MAPK and PI3K-AKT pathways. The ten most differentially expressed miRNAs were selected to verify their expressions using quantitative real-time polymerase chain reaction (qPCR). Furthermore, overexpression of rno-miR-3586-3p and rno-miR-455-5p can promote cell proliferation and exacerbate the IUA pathogenic process. However, overexpression of rno-miR-204-3p and rno-miR-3578 can inhibit cell behavior and IUA progression. The above results can provide detailed information for the understanding of IUA molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Raw sequencing data presented in this paper are available under the GEO accession number PRJNA598792.

References

  1. Deans R, Abbott J (2010) Review of intrauterine adhesions. J Minim Invasive Gynecol 17(5):555–569. https://doi.org/10.1016/j.jmig.2010.04.016

    Article  PubMed  Google Scholar 

  2. Zhu HY, Ge TX, Pan YB, Zhang SY (2017) Advanced role of hippo signaling in endometrial fibrosis: implications for intrauterine adhesion. Chin Med J 130(22):2732–2737. https://doi.org/10.4103/0366-6999.218013

    Article  PubMed  PubMed Central  Google Scholar 

  3. Conforti A, Alviggi C, Mollo A, De Placido G, Magos A (2013) The management of Asherman syndrome: a review of literature. Reprod Biol Endocrinol 11:118. https://doi.org/10.1186/1477-7827-11-118

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cao Y, Sun H, Zhu H, Zhu X, Tang X, Yan G, Wang J, Bai D, Wang J, Wang L, Zhou Q, Wang H, Dai C, Ding L, Xu B, Zhou Y, Hao J, Dai J, Hu Y (2018) Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial. Stem Cell Res Ther 9(1):192. https://doi.org/10.1186/s13287-018-0904-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. March CM (2011) Management of Asherman's syndrome. Reprod Biomed Online 23(1):63–76. https://doi.org/10.1016/j.rbmo.2010.11.018

    Article  PubMed  Google Scholar 

  6. Bai X, Liu J, Cao S, Wang L (2019) Mechanisms of endometrial fibrosis and the potential application of stem cell therapy. Discov Med 27(150):267–279

    PubMed  Google Scholar 

  7. Szostek-Mioduchowska AZ, Lukasik K, Skarzynski DJ, Okuda K (2019) Effect of transforming growth factor-beta1 on alpha-smooth muscle actin and collagen expression in equine endometrial fibroblasts. Theriogenology 124:9–17. https://doi.org/10.1016/j.theriogenology.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  8. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338. https://doi.org/10.1038/nrneph.2016.48

    Article  CAS  PubMed  Google Scholar 

  9. Nagaraj NS, Datta PK (2010) Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opin Investig Drugs 19(1):77–91. https://doi.org/10.1517/13543780903382609

    Article  CAS  PubMed  Google Scholar 

  10. Salma U, Xue M, Ali Sheikh MS, Guan X, Xu B, Zhang A, Huang L, Xu D (2016) Role of transforming growth factor-beta1 and smads signaling pathway in intrauterine adhesion. Mediators Inflamm 2016:4158287. https://doi.org/10.1155/2016/4158287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  12. O'Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  CAS  Google Scholar 

  13. Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14. https://doi.org/10.1016/j.addr.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406

    Article  CAS  PubMed  Google Scholar 

  15. O'Reilly S (2016) MicroRNAs in fibrosis: opportunities and challenges. Arthritis Res Ther 18:11. https://doi.org/10.1186/s13075-016-0929-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qin W, Chung AC, Huang XR, Meng XM, Hui DS, Yu CM, Sung JJ, Lan HY (2011) TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol 22(8):1462–1474. https://doi.org/10.1681/asn.2010121308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li J, Cen B, Chen S, He Y (2016) MicroRNA-29b inhibits TGF-beta1-induced fibrosis via regulation of the TGF-beta1/Smad pathway in primary human endometrial stromal cells. Mol Med Rep 13(5):4229–4237. https://doi.org/10.3892/mmr.2016.5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng Q, Wang XJ (2008) GOEAST: a web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res 36:W358–W363. https://doi.org/10.1093/nar/gkn276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322. https://doi.org/10.1093/nar/gkr483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18(7):1028–1040. https://doi.org/10.1038/nm.2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pohlers D, Brenmoehl J, Loffler I, Muller CK, Leipner C, Schultze-Mosgau S, Stallmach A, Kinne RW, Wolf G (2009) TGF-beta and fibrosis in different organs: molecular pathway imprints. Biochim Biophys Acta 1792(8):746–756. https://doi.org/10.1016/j.bbadis.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  22. Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-beta signaling in fibrosis. Growth Factors 29(5):196–202. https://doi.org/10.3109/08977194.2011.595714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210. https://doi.org/10.1002/path.2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zi Z, Chapnick DA, Liu X (2012) Dynamics of TGF-beta/Smad signaling. FEBS Lett 586(14):1921–1928. https://doi.org/10.1016/j.febslet.2012.03.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85(2):47–64. https://doi.org/10.1111/j.0959-9673.2004.00377.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584. https://doi.org/10.1038/nature02006

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Gao JL, Zhao MM, Zhu HX, Tian YX, Li R, Jiang XH, Yu L, Tian JR, Cui JZ (2018) Therapeutic effects of conditioned medium from bone marrow-derived mesenchymal stem cells on epithelial-mesenchymal transition in A549 cells. Int J Mol Med 41(2):659–668. https://doi.org/10.3892/ijmm.2017.3284

    Article  CAS  PubMed  Google Scholar 

  28. Sakairi T, Hiromura K, Takahashi S, Hamatani H, Takeuchi S, Tomioka M, Maeshima A, Kuroiwa T, Nojima Y (2011) Effects of proteasome inhibitors on rat renal fibrosis in vitro and in vivo. Nephrology 16(1):76–86. https://doi.org/10.1111/j.1440-1797.2010.01367.x

    Article  CAS  PubMed  Google Scholar 

  29. Hu Z-C, Shi F, Liu P, Zhang J, Guo D, Cao X-L, Chen C-F, Qu S-Q, Zhu J-Y, Tang B (2017) TIEG1 represses Smad7-mediated activation of TGF-β1/Smad signaling in keloid pathogenesis. J Investig Dermatol 137(5):1051–1059. https://doi.org/10.1016/j.jid.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  30. Han L, Zhu B, Chen H, Jin Y, Liu J, Wang W (2019) Proteasome inhibitor MG132 inhibits the process of renal interstitial fibrosis. Exp Ther Med 17(4):2953–2962. https://doi.org/10.3892/etm.2019.7329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu F, Liu C, Zhou D, Zhang L (2016) TGF-beta/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem 64(3):157–167. https://doi.org/10.1369/0022155415627681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, Karch J, Molkentin JD (2017) Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 127(10):3770–3783. https://doi.org/10.1172/jci94753

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20(1):21–37. https://doi.org/10.1038/s41580-018-0045-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rutnam ZJ, Wight TN, Yang BB (2013) miRNAs regulate expression and function of extracellular matrix molecules. Matrix Biol 32(2):74–85. https://doi.org/10.1016/j.matbio.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Duan H, Zhang HH, Gan L, Xu Q (2016) Integrated data set of microRNAs and mRNAs involved in severe intrauterine adhesion. Reprod Sci 23(10):1340–1347. https://doi.org/10.1177/1933719116638177

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Huang XR, Wei LH, Chung AC, Yu CM, Lan HY (2014) miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling. Mol Ther 22(5):974–985. https://doi.org/10.1038/mt.2014.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramdas V, McBride M, Denby L, Baker AH (2013) Canonical transforming growth factor-beta signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. Am J Pathol 183(6):1885–1896. https://doi.org/10.1016/j.ajpath.2013.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F, Trautwein C, Luedde T (2011) Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53(1):209–218. https://doi.org/10.1002/hep.23922

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki HI (2018) MicroRNA control of TGF-beta signaling. Int J Mol Sci. https://doi.org/10.3390/ijms19071901

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cai C, He H, Duan X, Wu W, Mai Z, Zhang T, Fan J, Deng T, Zhong W, Liu Y, Zhong W, Zeng G (2018) miR-195 inhibits cell proliferation and angiogenesis in human prostate cancer by downregulating PRR11 expression. Oncol Rep 39(4):1658–1670. https://doi.org/10.3892/or.2018.6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang YX, Yan YF, Liu YM, Li YJ, Zhang HH, Pang M, Hu JX, Zhao W, Xie N, Zhou L, Wang PY, Xie SY (2016) Smad3-related miRNAs regulated oncogenic TRIB2 promoter activity to effectively suppress lung adenocarcinoma growth. Cell Death Dis 7(12):e2528. https://doi.org/10.1038/cddis.2016.432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martinez-Anton A, Sokolowska M, Kern S, Davis AS, Alsaaty S, Taubenberger JK, Sun J, Cai R, Danner RL, Eberlein M, Logun C, Shelhamer JH (2013) Changes in microRNA and mRNA expression with differentiation of human bronchial epithelial cells. Am J Respir Cell Mol Biol 49(3):384–395. https://doi.org/10.1165/rcmb.2012-0368OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chai J, Wang S, Han D, Dong W, Xie C, Guo H (2015) MicroRNA-455 inhibits proliferation and invasion of colorectal cancer by targeting RAF proto-oncogene serine/threonine-protein kinase. Tumour Biol 36(2):1313–1321. https://doi.org/10.1007/s13277-014-2766-3

    Article  CAS  PubMed  Google Scholar 

  44. Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, Czyzyk-Krzeska MF (2012) VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21(4):532–546. https://doi.org/10.1016/j.ccr.2012.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salinas-Vera YM, Marchat LA, García-Vázquez R, González de la Rosa CH, Castañeda-Saucedo E, Tito NN, Flores CP, Pérez-Plasencia C, Cruz-Colin JL, Carlos-Reyes Á, López-González JS, Álvarez-Sánchez ME, López-Camarillo C (2018) Cooperative multi-targeting of signaling networks by angiomiR-204 inhibits vasculogenic mimicry in breast cancer cells. Cancer Lett 432:17–27. https://doi.org/10.1016/j.canlet.2018.06.003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 81701395).

Author information

Authors and Affiliations

Authors

Contributions

YX conceived and designed the study, and critically revised the manuscript. SL performed the experiments, analyzed the data and drafted the manuscript. XH, YL and DS participated in study design, study implementation and manuscript revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu Xiao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors have read the manuscript and authorized the submission for publication.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Experimental Animal Welfare Ethics Branch of Biomedical Ethics Committee of Peking University [permit no. LA2018022]. Appropriate guidelines for the use of animals have been followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Huang, X., Liu, Y. et al. Functional analysis of miRNAs combined with TGF-β1/Smad3 inhibitor in an intrauterine rat adhesion cell model. Mol Cell Biochem 470, 15–28 (2020). https://doi.org/10.1007/s11010-020-03741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03741-7

Keywords

Navigation