Skip to main content

Advertisement

Log in

Estimation of metademographic rates and landscape connectivity for a conservation-reliant anuran

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Amphibian conservation efforts commonly assume populations are tied to waterbodies that collectively function as a metapopulation. This assumption is rarely evaluated, and there is a need to understand the degree of connectivity among patches to appropriately define, manage, and conserve biological populations.

Objectives

Our objectives were to quantify local persistence, colonization, and recruitment (metademographic rates) in relation to habitat attributes, evaluate the influence of the spatial arrangement of patches on landscape-scale population dynamics, and estimate the scale at which metapopulation dynamics are occurring for Oregon spotted frog (Rana pretiosa).

Methods

We collected R. pretiosa detection/non-detection data and habitat information from 93 sites spread throughout the species’ extant range in Oregon, USA, 2010–2018. We developed a spatial multistate dynamic occupancy model to analyze these data.

Results

The proportion of sites occupied by R. pretiosa was relatively stable despite regular turnover in site occupancy. Connectivity was greatest when the distance between sites was within 4.49–7.70 km, and the results suggested that populations within 1 km are at the appropriate spatial scale for effective population management. Rana pretiosa metademographic rates were strongly tied to water availability, vegetation characteristics, and beaver dams.

Conclusions

Our analysis provides critical information to identify the appropriate spatial scale for effective population management, estimates the distance at which populations are connected, and quantifies the effects of hypothesized threats to species at a landscape scale. We believe this model will prove to be useful to inform conservation and management strategies for multiple species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available as a U.S. Geological Survey Data Release (https://doi.org/10.5066/P94LYW62).

References

  • Adams MJ (1999) Correlated factors in amphibian decline: exotic species and habitat change in Western Washington. J Wildl Manag 63:1162–1171

    Article  Google Scholar 

  • Adams MJ (2000) Pond permanence and the effects of exotic vertebrates on anurans. Ecol Appl 10:559–568

    Article  Google Scholar 

  • Adams MJ, Miller DAW, Muths E, Corn PS, Grant EHC, Bailey LL, Fellers GM, Fisher RN, Sadinski WJ, Waddle H, Walls SC (2013) Trends in amphibian occupancy in the United States. PLoS ONE 8:e64347

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey LL, Hines JE, Nichols JD, MacKenzie DI (2007) Sampling design trade-offs in occupancy studies with imperfect detection: examples and software. Ecol Appl 17:281–290

    Article  PubMed  Google Scholar 

  • Bailey LL, Muths E (2019) Integrating amphibian movement studies across scales better informs conservation decisions. Biol Conserv 236:261–268

    Article  Google Scholar 

  • Bainbridge L, Stockwell M, Valdez J, Klop-Toker K, Clulow S, Clulow J, Mahoney M (2015) Tagging tadpoles: retention rates and impacts of visible implant elastomer (VIE) tags from the larval to adult amphibian stages. Herpetol J 25:133–140

    Google Scholar 

  • Berven KA, Grudzien TA (1990) Dispersal in the wood frog (Rana sylvatica): implications for genetic population structure. Evolution 44:2047–2056

    PubMed  Google Scholar 

  • Blouin MS, Phillipsen IC, Monsen KJ (2010) Population structure and conservation genetics of the Oregon spotted frog, Rana pretiosa. Conserv Genet 11:2179–2194

    Article  Google Scholar 

  • Broms KM, Hooten MB, Johnson DS, Altwegg R, Conquest LL (2016) Dynamic occupancy models for explicit colonization processes. Ecology 97:194–204

    Article  PubMed  Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 9:266–285

    Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Chandler RB, Muths E, Sigafus BH, Schwalbe CR, Jarchow CJ, Hossack BR (2015) Spatial occupancy models for predicting metapopulation dynamics and viability following reintroduction. J Appl Ecol 52:1325–1333

    Article  Google Scholar 

  • Chelgren ND, Pearl CA, Adams MJ, Bowerman J (2008) Demography and movement in a relocated population of Oregon Spotted Frogs (Rana pretiosa): influence of season and gender. Copeia 2008:742–751

    Article  Google Scholar 

  • Committee on the Status of Endangered Wildlife in Canada (2000) COSEWIC assessment and status report on the Oregon Spotted Frog Rana pretiosa in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. Vi + 22 pp.

  • Davis CL, Miller DAW, Walls SC, Barichivich WJ, Riley JW, Brown ME (2017) Species interactions and the effects of climate variability on a wetland amphibian metacommunity. Ecol Appl 27:285–296

    Article  PubMed  Google Scholar 

  • Dellaportas P, Forster JJ, Ntzoufras I (2002) On Bayesian model and variable selection using MCMC. Stat Comput 12:27–36

    Article  Google Scholar 

  • Duarte A, Pearl CA, Adams MJ, Peterson JT (2017) A new parameterization for integrated population models to document amphibian reintroductions. Ecol Appl 27:1761–1775

    Article  PubMed  Google Scholar 

  • Environmental Systems Research Institute (2014) ArcGIS desktop: release 10.3. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  • Epps CW, Palsbøll PJ, Wehausen JD, Roderick GK, Ramey RR II, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038

    Article  Google Scholar 

  • Funk WC, Greene AE, Corn PS, Allendorf FW (2005) High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation. Biol Let 1:13–16

    Article  Google Scholar 

  • Gao X, Jin C, Llusia D, Li Y (2015) Temperature-induced shifts in hibernation behavior in experimental amphibian populations. Sci Rep 5:11580

    Article  PubMed  PubMed Central  Google Scholar 

  • Gould WR, Patla DA, Daley R, Corn PS, Hossack BR, Bennetts R, Peterson CR (2012) Estimating occupancy in large landscapes: evaluation of amphibian monitoring in the greater yellowstone ecosystem. Wetlands 32:379–389

    Article  Google Scholar 

  • Gould WR, Ray AM, Bailey LL, Thoma D, Daley R, Legg K (2019) Multistate occupancy modeling improves understanding of amphibian breeding dynamics in the Greater Yellowstone Area. Ecol Appl 29:e01825

    Article  PubMed  PubMed Central  Google Scholar 

  • Grant EHC (2008) Visual implant elastomer mark retention through metamorphosis in amphibian larvae. J Wildl Manag 72:1247–1252

    Article  Google Scholar 

  • Grant EHC, Miller DAW, Schmidt BR, Adams MJ, Amburgey SM, Chambert T, Cruickshank SS, Fisher RN, Green DM, Hossack BR, Johnson PTJ, Joseph MB, Rittenhouse TAG, Ryan ME, Waddle JH, Walls SC, Bailey LL, Fellers GM, Gorman TA, Ray AM, Pilliod DS, Price SJ, Saenz D, Sadinski W, Muths E (2016) Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Sci Rep 6:25635

    Article  CAS  Google Scholar 

  • Grant EHC, Zipkin EF, Nichols JD, Campbell JP (2013) A strategy for monitoring and managing declines in an amphibian community. Conserv Biol 27:1245–1253

    Article  PubMed  Google Scholar 

  • Green AW, Hooten MB, Grant EHC, Bailey LL (2013) Evaluating breeding and metamorph occupancy and vernal pool management effects for wood frogs using a hierarchical model. J Appl Ecol 50:1116–1123

    Google Scholar 

  • Green DM, Sharbel TF, Kearsley J, Kaiser H (1996) Postglacial range fluctuation, genetic subdivision and speciation in the western North American spotted frog complex, Rana pretiosa. Evolution 50:374–390

    Article  PubMed  Google Scholar 

  • Hammerson G, Pearl CA (2004) Rana pretiosa. The IUCN Red List of Threatened Species 2004: e.T19179A8848383.

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Heard GW, McCarthy MA, Scroggie MP, Baumgartner JB, Parris KM (2013) A Bayesian model of metapopulation viability, with application to an endangered amphibian. Divers Distrib 19:555–566

    Article  Google Scholar 

  • Hobbs NT, Hooten MB (2015) Bayesian models: a statistical primer for ecologists. Princeton University Press, Princeton

    Book  Google Scholar 

  • Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SHM, Carpenter KE, Chanson J, Collen B, Cox NA, Darwall WRT, Dulvy NK, Harrison LR, Katariya V, Pollock CM, Quader S, Richman NI, Rodrigues ASL, Tognelli MF, Vié J-C, Aguiar JM, Allen DJ, Allen GR, Amori G, Ananjeva NB, Andreone F, Andrew P, Ortiz ALA, Baillie JEM, Baldi R, Bell BD, Biju SD, Bird JP, Black-Decima P, Blanc JJ, Bolaños F, Bolivar-G W, Burfield IJ, Burton JA, Capper DR, Castro F, Catullo G, Cavanagh RD, Channing A, Chao NL, Chenery AM, Chiozza F, Clausnitzer V, Collar NJ, Collett LC, Collette BB, Fernandez CFC, Craig MT, Crosby MJ, Cumberlidge N, Cuttelod A, Derocher AE, Diesmos AC, Donaldson JS, Duckworth JW, Dutson G, Dutta SK, Emslie RH, Farjon A, Fowler S, Freyhof J, Garshelis DL, Gerlach J, Gower DJ, Grant TD, Hammerson GA, Harris RB, Heaney LR, Hedges SB, Hero J-M, Hughes B, Hussain SA, Icochea MJ, Inger RF, Ishii N, Iskandar DT, Jenkins RKB, Kaneko Y, Kottelat M, Kovacs KT, Kuzmin SL, La Marca E, Lamoreux JF, Lau MWN, Lavilla EO, Leus K, Lewison RL, Lichtenstein G, Livingstone SR, Lukoschek V, Mallon DP, McGowan PJK, McIvor A, Moehlman PD, Molur S, Alonso AM, Musick JA, Nowell K, Nussbaum RA, Olech W, Orlov NL, Papenfuss TJ, Parra-Olea G, Perrin WF, Polidoro BA, Pourkazemi M, Racey PA, Ragle JS, Ram M, Rathbun G, Reynolds RP, Rhodin AGJ, Richards SJ, Rodríguez LO, Ron SR, Rondinini C, Rylands AB, Sadovy de Mitcheson Y, Sanciangco JC, Sanders KL, Santos-Barrera G, Schipper J, Self-Sullivan C, Shi Y, Shoemaker A, Short FT, Sillero-Zubiri C, Silvano DL, Smith KG, Smith AT, Snoeks J, Stattersfield AJ, Symes AJ, Taber AB, Talukdar BK, Temple HJ, Timmins R, Tobias JA, Tsytsulina K, Tweddle D, Ubeda C, Valenti SV, van Dijk PP, Veiga LM, Veloso A, Wege DC, Wilkinson M, Williamson EA, Xie F, Young BE, Akçakaya HR, Bennun L, Blackburn TM, Boitani L, Dublin HT, da Fonseca GAB, Gascon C, Lacher TE Jr, Mace GM, Mainka SA, McNeely JA, Mittermeier RA, Reid GM, Rodriguez JP, Rosenberg AA, Samways MJ, Smart J, Stein BA, Stuart SN (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Holgerson MA, Duarte A, Hayes MP, Adams MJ, Tyson JA, Douville KA, Strecker AL (2019) Floodplains provide important amphibian habitat despite multiple ecological threats. Ecosphere 10:e02853

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

    Book  Google Scholar 

  • Hossack BR, Gould WR, Patla DA, Muths E, Daley R, Legg K, Corn PS (2015) Trends in Rocky Mountain amphibians and the role of beaver as a keystone species. Biol Conserv 187:260–269

    Article  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755

    Article  CAS  PubMed  Google Scholar 

  • Howell PE, Muths E, Hossack BR, Sigafus BH, Chandler RB (2018) Increasing connectivity between metapopulation ecology and landscape ecology. Ecology 99:1119–1128

    Article  PubMed  Google Scholar 

  • Kapust HQ, McAllister KR, Hayes MP (2012) Oregon spotted frog (Rana pretiosa) response to enhancement of oviposition habitat degraded by invasive reed canary grass (Phalaris arundinacea). Herpetol Conserv Biol 7:358–366

    Google Scholar 

  • Kellner K (2014) jagsUI: Run JAGS from R (an alternative user interface for rjags). R package version 1.0.

  • Kendall WL, Nichols JD (2004) On the estimation of dispersal and movement of birds. Condor 106:720–731

    Article  Google Scholar 

  • Kennedy MC, Prichard SJ (2017) Choose your neighborhood wisely: implications of subsampling and autocorrelation structure in simultaneous autoregression models for landscape ecology. Landsc Ecol 32:945–952

    Article  Google Scholar 

  • Kuo L, Mallick B (1998) Variable selection for regression models. Sankhya: The Indian Journal of Statistics, Series B 60:65–81

    Google Scholar 

  • Langhammer PF, Burrowes PA, Lips KR, Bryant AB, Collins JP (2014) Susceptibility to the amphibian chytrid fungus varies with ontogeny in the direct-developing frog, Eleutherodactylus coqui. J Wildl Dis 50:438–446

    Article  PubMed  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Licht LE (1971) Breeding habits and embryonic thermal requirements of the frogs, Rana aurora aurora and Rana pretiosa pretiosa. Am Midl Nat 115:116–124

    Google Scholar 

  • Licht LE (1975) Comparative life history features of the western spotted frog, Rana pretiosa, from low- and high-elevation populations. Can J Zool 53:1254–1257

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–2207

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Seamans ME, Guttiérrez RJ (2009) Modeling species occurrence dynamics with multiple states and imperfect detection. Ecology 90:823–835

    Article  PubMed  Google Scholar 

  • Marsh DM, Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conserv Biol 15:40–49

    Article  Google Scholar 

  • Martin RA (2011) Evaluating a novel technique for individual identification of anuran tadpoles using coded wire tags. Herpetol Conserv Biol 6:155–160

    Google Scholar 

  • McAllister KR, Watson JW, Risenhoover K, McBride T (2004) Marking and radiotelemetry of Oregon spotted frogs (Rana pretiosa). Northwest Nat 85:20–25

    Article  Google Scholar 

  • McCaffery RM, Eby LA, Maxell BA, Corn PS (2014) Breeding site heterogeneity reduces variability in frog recruitment and population dynamics. Biol Conserv 170:169–176

    Article  Google Scholar 

  • Miller DAW, Grant EHC, Muths E, Amburgey SM, Adams MJ, Joseph MB, Waddle JH, Johnson PTJ, Ryan ME, Schmidt BR, Calhoun DL, Davis CL, Fisher RN, Green DM, Hossack BR, Rittenhouse TAG, Walls SC, Bailey LL, Cruickshank SS, Fellers GM, Gorman TA, Haas CA, Hughson W, Pilliod DS, Price SJ, Ray AM, Sadinski W, Saenz D, Barichivich WJ, Brand A, Brehme CS, Dagit R, Delaney KS, Glorioso BM, Kats LB, Kleeman PM, Pearl CA, Rochester CJ, Riley SPD, Roth M, Sigafus BH (2018) Quantifying climate sensitivity and climate driven change in North American amphibian communities. Nat Commun 9:3926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moilanen A (2002) Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos 96:516–530

    Article  Google Scholar 

  • Navas CA (1996) The effect of temperature on the vocal activity of tropical anurans: a comparison of high and low-elevation species. J Herpetol 30:488–497

    Article  Google Scholar 

  • Nicol SC, Possingham HP (2010) Should metapopulation restoration strategies increase patch area or number of patches? Ecol Appl 20:566–581

    Article  PubMed  Google Scholar 

  • Pearl CA, Adams MJ, Haggerty PK, Urban L (2015) Using occupancy models to accommodate uncertainty in the interpretation of aerial photograph data: status of beaver in central Oregon, USA. Wildl Soc Bull 39:319–325

    Article  Google Scholar 

  • Pearl CA, Adams MJ, Leuthold N (2009) Breeding habitat and local population size of the Oregon spotted frog (Rana pretiosa) in Oregon, USA. Northwest Nat 90:136–147

    Article  Google Scholar 

  • Pearl CA, Bowerman J, Knight D (2005) Feeding behavior and aquatic habitat use by Oregon spotted frogs (Rana pretiosa) in central Oregon. Northwest Nat 86:36–38

    Article  Google Scholar 

  • Pearl CA, Hayes MP (2005) Rana pretiosa, Oregon spotted frog. In: Lannoo MJ (ed) Amphibian Declines: The Conservation Status of United States Species. University of California Press, Berkeley, CA, pp 577–580

    Google Scholar 

  • Pearl CA, McCreary B, Rowe JC, Adams MJ (2018) Late-season movement and habitat use by Oregon spotted frog (Rana pretiosa) in Oregon, USA. Copeia 106:539–549

    Article  Google Scholar 

  • Pechmann JHK, Scott DE, Semlitsch RD, Caldwell JP, Vitt LJ, Gibbons JW (1991) Declining amphibian populations: the problem of separating human impacts from natural fluctuations. Science 253:892–895

    Article  CAS  PubMed  Google Scholar 

  • Peterson JT, Freeman MC (2016) Integrating modeling, monitoring, and management to reduce critical uncertainties in water resource decision making. J Environ Manag 183:361–370

    Article  Google Scholar 

  • Peterson JT, Shea CP (2015) An evaluation of the relations between flow regime components, stream characteristics, species traits, and meta-demographic rates of warm-water-stream fishes: implications for aquatic resource management. River Res Appl 31:1227–1241

    Article  Google Scholar 

  • Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A (eds) Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria

  • Popescu VD, Gibbs JP (2009) Interactions between climate, beaver activity, and pond occupancy by the cold-adapted mink frog in New York State, USA. Biol Conserv 142:2059–2068

    Article  Google Scholar 

  • Popescu VD, Kissel AM, Pearson M, Phalen WJ, Govindarajulu P, Bishop CA (2013) Defining conservation-relevant habitat selection by the highly imperiled Oregon spotted frog, Rana pretiosa. Herpetol Conserv Biol 8:688–706

    Google Scholar 

  • Price EPF, Spyreas G, Matthews JW (2020) Biotic homogenization of wetland vegetation in the conterminous United States driven by Phalaris arundinacea and anthropogenic disturbance. Landsc Ecol 35:779–792

    Article  Google Scholar 

  • Putnam RW, Bennett AF (1981) Thermal dependence of behavioural performance of anuran amphibians. Anim Behav 29:502–509

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Risk BB, De Valpine P, Beissinger SR (2011) A robust-design formulation of the incidence function model of metapopulation dynamics applied to two species of rails. Ecology 92:462–474

    Article  PubMed  Google Scholar 

  • Rittenhouse TAG (2011) Anuran larval habitat quality when reed canary grass is present in wetlands. J Herpetol 45:491–496

    Article  Google Scholar 

  • Robertson JM, Murphy MA, Pearl CA, Adams MJ, Páez-Vacas MI, Haig SM, Pilliod DS, Storfer A, Funk WC (2018) Regional variation in drivers of connectivity for two frog species (Rana pretiosa and R. luteiventris) from the U.S. Pacific Northwest. Mol Ecol 27:3242–3256

    Article  Google Scholar 

  • Rowe JC, Duarte A, Pearl CA, McCreary B, Galvan SK, Peterson JT, Adams MJ (2019) Disentangling effects of invasive species and habitat while accounting for observer error in a long-term amphibian study. Ecosphere 10:e02674

    Article  Google Scholar 

  • Rowe JC, Garcia TS (2014) Impacts of wetland restoration efforts on an amphibian assemblage in a multi-invader community. Wetlands 34:141–153

    Article  Google Scholar 

  • Royle JA, Kéry M (2007) A Bayesian state-space formulation of dynamic occupancy models. Ecology 88:1813–1823

    Article  PubMed  Google Scholar 

  • Ryan ME, Palen WJ, Adams MJ, Rochefort RM (2014) Amphibians in the climate vice: loss and restoration of resilience of montane wetland ecosystems in the western US. Front Ecol Environ 12:232–240

    Article  Google Scholar 

  • Ryser J (1998) Determination of growth and maturation in the common frog, Rana temporaria, by skeletochronology. J Zool 216:673–685

    Article  Google Scholar 

  • Saenz D, Fitzgerald LA, Baum KA, Conner RN (2006) Abiotic correlates of anuran calling phenology: the importance of rain, temperature, and season. Herpetol Monogr 20:64–82

    Article  Google Scholar 

  • Scroggie MP, Preece K, Nicholson E, McCarthy MA, Parris KM, Heard GW (2019) Optimizing habitat management for amphibians: from simple models to complex decisions. Biol Conserv 236:60–69

    Article  Google Scholar 

  • Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag 72:260–267

    Article  Google Scholar 

  • Semlitsch RD, Bodie JR (1998) Are small, isolated wetlands expendable? Conserv Biol 12:1129–1133

    Article  Google Scholar 

  • Shafer BA, Dezman LE (1982) Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In: Proceedings of the 50th Annual Western Snow Conference, pp 164–175

  • Sinsch U, Dehling JM (2017) Tropical anurans mature early and die young: evidence from eight Afromontane Hyperolius species and a meta-analysis. PLoS ONE 12:e0171666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  • Spyreas G, Wilm BW, Plocher AE, Ketzner DM, Mathews JW, Ellis JL, Heske EJ (2010) Biological consequences of invasion by reed canary grass (Phalaris arundinacea). Biol Invasions 12:1253–1267

    Article  Google Scholar 

  • State of Oregon Department of Geology and Mineral Industries (2018) Oregon Lidar Consortium. https://www.oregongeology.org/lidar/index.htm. Accessed June 14, 2018

  • Stevens CE, Paszkowski CA, Foote AL (2007) Beaver (Castor canadensis) as a surrogate species for conserving anuran amphibians on boreal streams in Alberta, Canada. Biol Conserv 134:1–13

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Sutherland C, Elston DA, Lambin X (2014) A demographic, spatially explicit patch occupancy model for describing and predicting metapopulation dynamics and persistence. Ecology 95:3149–3160

    Article  Google Scholar 

  • Swannack TM, Forstner MRJ (2007) Possible cause for the sex-ratio disparity of the endangered Houston toad (Bufo houstonensis). Southwest Nat 52:386–392

    Article  Google Scholar 

  • Swannack TM, Grant WE, Forstner MRJ (2009) Projecting population trends of endangered amphibian species in the face of uncertainty: a pattern-oriented approach. Ecol Model 220:148–159

    Article  Google Scholar 

  • U.S. Fish and Wildlife Service (2014) Endangered and threatened wildlife and plants; Threatened Status for Oregon Spotted Frog; Final rule. Fed Reg 79:51657–51710

    Google Scholar 

  • U.S. Geological Survey (2018a) National Hydrography Dataset - High Resolution. https://www.usgs.gov/core-science-systems/ngp/national-hydrography/access-national-hydrography-products. Accessed June 14 2018.

  • U.S. Geological Survey (2018b) National Elevation Dataset. https://www.sciencebase.gov. Accessed June 14 2018.

  • Urquhart NS, Kincaid TM (1999) Designs for detecting trend from repeated surveys of ecological resources. J Agric Biol Environ Stat 4:404–414

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index - SPEI. J Clim 23:1696–1718

    Article  Google Scholar 

  • Wake DB (1991) Declining amphibian populations. Science 253:860

    Article  CAS  PubMed  Google Scholar 

  • Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA 105:11466–11473

    Article  CAS  PubMed  Google Scholar 

  • Watson JW, McAllister KR, Pierce DJ (2003) Home ranges, movements, and habitat selection of Oregon spotted frog (Rana pretiosa). J Herpetol 37:292–300

    Article  Google Scholar 

  • Weir L, Fiske IJ, Royle JA (2009) Trends in anuran occupancy from northeastern states of the North American Amphibian Monitoring Program. Herpetol Conserv Biol 4:389–402

    Google Scholar 

  • Wells KD (1977) The social behaviour of anuran amphibians. Anim Behav 25:666–693

    Article  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San Diego

    Google Scholar 

  • Zero VH, Murphy MA (2016) An amphibian species of concern prefers breeding in active beaver ponds. Ecosphere 7:e01330

    Article  Google Scholar 

  • Zylstra ER, Swann DE, Hossack BR, Muths E, Steidl RJ (2019) Drought-mediated extinction of an arid-land amphibian: insights from a spatially explicit dynamic occupancy model. Ecol Appl 29:e01859

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was made possible by the dedicated field crews who collected and managed survey data over the years, and we owe them a debt of gratitude. We thank L.L. Bailey and two anonymous reviewers for providing feedback on an earlier draft of the manuscript. We also thank P. Haggerty for her assistance with GIS analyses. We appreciate K. Van Norman, Bureau of Land Management for continued support of our work and our public and private cooperators, among them the Klamath Marsh National Wildlife Refuge, the Deschutes, Willamette, and Fremont-Winema National Forests, the Bureau of Land Management Prineville and Klamath Falls Resource Areas, and the Sunriver Nature Center. Funding for this study was provided, in part, by the Interagency Special Status/Sensitive Species Program, a cooperative program of the Pacific Northwest Regional Office of the U.S. Forest Service and Oregon/Washington State offices of the Bureau of Land Management. Additional funding was provided by the U.S. Geological Survey Amphibian Research and Monitoring Initiative. The Oregon Cooperative Fish and Wildlife Research Unit is jointly sponsored by the U.S. Geological Survey, the U.S. Fish and Wildlife Service, the Oregon Department of Fish and Wildlife, Oregon State University, and the Wildlife Management Institute. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This is contribution number 748 of the U.S. Geological Survey Amphibian Research and Monitoring Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Duarte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, A., Peterson, J.T., Pearl, C.A. et al. Estimation of metademographic rates and landscape connectivity for a conservation-reliant anuran. Landscape Ecol 35, 1459–1479 (2020). https://doi.org/10.1007/s10980-020-01030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01030-8

Keywords

Navigation