Skip to main content

Advertisement

Log in

Low wind speed aerodynamics of asymmetric blade H-Darrieus wind turbine-its desired blade pitch for performance improvement in the built environment

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

An asymmetric blade vertical-axis wind turbine (VAWT) is one of the emerging technologies for harvesting power in the built environment, which has low wind speed. Although asymmetric blade improves VAWT’s performance, the effect of blade pitch angle on its design is hardly ascertained. In this paper, unsteady 2D Reynolds-averaged Navier–Stokes CFD simulations are carried out to investigate the effect of blade pitch angle on the aerodynamic performance of a NACA 63-415 asymmetric blade H-Darrieus VAWT at a low wind speed of 6.0 m/s. Its detailed flow physics at different operating and pitch angle conditions is investigated, and important performance insights are obtained to elucidate its desired blade pitch for performance improvement. The present study shows that positive pitch angle (+ 5°) improves the turbine performance in upwind position, whereas negative pitch angle (− 5°) augments the turbine performance in downwind position as well as causes less wake effect than positive pitch angle. Further, optimal pitch angle (+ 5°) is found out at which the maximum power coefficient of 0.271 is obtained for an operating tip speed ratio 2.4. The present study delineates how desired blade pitch improves the performance of asymmetric blade VAWT for sustainable power generation in the built environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zamani M, Maghrebi MJ, Moshizi SA (2016) Numerical study of airfoil thickness effects on the performance of J-shaped straight blade vertical axis wind turbine. Wind Struct Int J 22:595–616. https://doi.org/10.12989/was.2016.22.5.595

    Article  Google Scholar 

  2. Castelli M, Betta DS, Bernini E (2012) Effect of blade number on a straight-bladed vertical axis wind turbine. World Acad Sci Eng Technol 61:305–311

    Google Scholar 

  3. Bedon G, Castelli M, Benini E (2012) Evaluation of the effect of rotor solidity on the performance of a H-Darrieus turbine adopting a blade element-momentum algorithm. World Acad Sci Eng Technol 6:1989–1994

    Google Scholar 

  4. Fiedler AJ, Tullis S (2009) Blade offset and pitch effects on a high solidity vertical axis wind turbine. Wind Eng 33:237–246. https://doi.org/10.1260/030952409789140955

    Article  Google Scholar 

  5. Parra-Santos MT, Uzarraga CN, Gallegos A, Castro F (2015) Influence of solidity on vertical axis wind turbines. Int J Appl Math Electron Comput 3:215. https://doi.org/10.18100/ijamec.42848

    Article  Google Scholar 

  6. Sun X, Wang Y, An Q et al (2014) Aerodynamic performance and characteristic of vortex structures for Darrieus wind turbine. II. The relationship between vortex structure and aerodynamic performance Aerodynamic performance and characteristic of vortex structures for Darrieus wind turbine. J Renew Sustain 043135:1–18. https://doi.org/10.1063/1.4893776

    Article  Google Scholar 

  7. Li Q, Maeda T, Kamada Y et al (2015) Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind turbine. Energy 90:784–795. https://doi.org/10.1016/j.energy.2015.07.115

    Article  Google Scholar 

  8. Sun X, Wang Y, An Q et al (2014) Aerodynamic performance and characteristic of vortex structures for Darrieus wind turbine. I. Numerical method and aerodynamic performance. J Renew Sustain Energy. https://doi.org/10.1063/1.4893775

    Article  Google Scholar 

  9. Roh SC, Kang SH (2013) Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine. J Mech Sci Technol 27:3299–3307. https://doi.org/10.1007/s12206-013-0852-x

    Article  Google Scholar 

  10. Lam HF, Liu YM, Peng HY et al (2018) Assessment of solidity effect on the power performance of H-rotor vertical axis wind turbines in turbulent flows. J Renew Sustain Energy. https://doi.org/10.1063/1.5023120

    Article  Google Scholar 

  11. Sagharichi A, Zamani M, Ghasemi A (2018) Effect of solidity on the performance of variable-pitch vertical axis wind turbine. Energy. https://doi.org/10.1016/j.energy.2018.07.160

    Article  Google Scholar 

  12. Joo S, Choi H, Lee J (2015) Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds. Energy 90:439–451. https://doi.org/10.1016/j.energy.2015.07.051

    Article  Google Scholar 

  13. Howell R, Qin N, Edwards J, Durrani N (2010) Wind tunnel and numerical study of a small vertical axis wind turbine. Renew Energy 35:412–422. https://doi.org/10.1016/j.renene.2009.07.025

    Article  Google Scholar 

  14. Mohamed MH, Ali AM, Hafiz AA (2015) CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter. Eng Sci Technol Int J 18:1–13. https://doi.org/10.1016/j.jestch.2014.08.002

    Article  Google Scholar 

  15. Ouro P, Stoesser T, Ramirez L (2018) Effect of blade cambering on dynamic stall in view of designing vertical axis turbines. J Fluids Eng 140:1–12. https://doi.org/10.1115/1.4039235

    Article  Google Scholar 

  16. Mazarbhuiya HMSM, Biswas A, Sharma KK (2018) Performance prediction of asymmetrical bladed H-Darrieus VAWT rotors in low wind speed condition using CFD. pp 020040: https://doi.org/10.1063/1.5032002

  17. Bausas MD, Danao LAM (2015) The aerodynamics of a camber-bladed vertical axis wind turbine in unsteady wind. Energy 93:1155–1164. https://doi.org/10.1016/j.energy.2015.09.120

    Article  Google Scholar 

  18. Danao LA, Qin N, Howell R (2012) A numerical study of blade thickness and camber effects on vertical axis wind turbines. Proc Inst Mech Eng Part A J Power Energy 226:867–881. https://doi.org/10.1177/0957650912454403

    Article  Google Scholar 

  19. Subramanian A, Yogesh SA, Sivanandan H et al (2017) Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 133:179–190. https://doi.org/10.1016/j.energy.2017.05.118

    Article  Google Scholar 

  20. Asr MT, Nezhad EZ, Mustapha F, Wiriadidjaja S (2016) Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils. Energy 112:528–537. https://doi.org/10.1016/j.energy.2016.06.059

    Article  Google Scholar 

  21. Jain P, Abhishek A (2016) Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching. Renew Energy 97:97–113. https://doi.org/10.1016/j.renene.2016.05.056

    Article  Google Scholar 

  22. Hwang IS, Lee YH, Kim SJ (2009) Optimization of cycloidal water turbine and the performance improvement by individual blade control. Appl Energy 86:1532–1540. https://doi.org/10.1016/j.apenergy.2008.11.009

    Article  Google Scholar 

  23. Zeiner-Gundersen DH (2015) A novel flexible foil vertical axis turbine for river, ocean, and tidal applications. Appl Energy 151:60–66. https://doi.org/10.1016/j.apenergy.2015.04.005

    Article  Google Scholar 

  24. Lazauskas L, Kirke BK (2012) Modeling passive variable pitch cross flow hydrokinetic turbines to maximize performance and smooth operation. Renew Energy 45:41–50. https://doi.org/10.1016/j.renene.2012.02.005

    Article  Google Scholar 

  25. Li Q, Maeda T, Kamada Y et al (2016) Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test. Renew Energy 90:291–300

    Article  Google Scholar 

  26. Islam M, Fartaj A, Carriveau R (2008) Analysis of the design parameters related to a fixed-pitch straight-bladed vertical axis wind turbine. Wind Eng 32:491–507. https://doi.org/10.1260/030952408786411903

    Article  Google Scholar 

  27. Gosselin R, Dumas G, Boudreau M (2016) Parametric study of H-Darrieus vertical-axis turbines using CFD simulations. J Renew Sustain Energy. https://doi.org/10.1063/1.4963240

    Article  Google Scholar 

  28. Sagharichi A, Maghrebi MJ, Arabgolarcheh A (2016) Variable pitch blades: an approach for improving performance of Darrieus wind turbine. J Renew Sustain Energy. https://doi.org/10.1063/1.4964310

    Article  Google Scholar 

  29. Lee YT, Lim HC (2015) Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine. Renew Energy 83:407–415. https://doi.org/10.1016/j.renene.2015.04.043

    Article  Google Scholar 

  30. Rezaeiha A, Kalkman I, Blocken B (2017) Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl Energy 197:132–150. https://doi.org/10.1016/j.apenergy.2017.03.128

    Article  Google Scholar 

  31. Li Q, Maeda T, Kamada Y et al (2017) Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method. Energy 121:1–9. https://doi.org/10.1016/j.energy.2016.12.112

    Article  Google Scholar 

  32. Chen CC, Kuo CH (2013) Effects of pitch angle and blade camber on flow characteristics and performance of small-size Darrieus VAWT. J Vis 16:65–74. https://doi.org/10.1007/s12650-012-0146-x

    Article  Google Scholar 

  33. Eboibi O, Danao LAM, Howell RJ (2016) Experimental investigation of the influence of solidity on the performance and flow field aerodynamics of vertical axis wind turbines at low Reynolds numbers. Renew Energy 92:474–483. https://doi.org/10.1016/j.renene.2016.02.028

    Article  Google Scholar 

  34. Armstrong S, Fiedler A, Tullis S (2012) Flow separation on a high Reynolds number, high solidity vertical axis wind turbine with straight and canted blades and canted blades with fences. Renew Energy 41:13–22. https://doi.org/10.1016/j.renene.2011.09.002

    Article  Google Scholar 

  35. Abdalrahman G, Melek W, Lien FS (2017) Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT). Renew Energy 114:1353–1362. https://doi.org/10.1016/j.renene.2017.07.068

    Article  Google Scholar 

  36. Kjellin J, Bülow F, Eriksson S et al (2011) Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine. Renew Energy 36:3050–3053. https://doi.org/10.1016/j.renene.2011.03.031

    Article  Google Scholar 

  37. Bhuyan S, Biswas A (2014) Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors. Energy Convers Manag 87:859–867. https://doi.org/10.1016/j.enconman.2014.07.056

    Article  Google Scholar 

  38. Mohamed MH (2012) Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 47:522–530. https://doi.org/10.1016/j.energy.2012.08.044

    Article  Google Scholar 

  39. Beri H, Yao Y (2011) Effect of Camber Airfoil on Self-Starting of VAWT.pdf. J Environ Sci Technol 4:302–312

    Article  Google Scholar 

  40. Archer CL, Jacobson MZ (2005) Evaluation of global wind power. J Geophys Res D: Atmos 110:1–20. https://doi.org/10.1029/2004JD005462

    Article  Google Scholar 

  41. Mazarbhuiya HMSM, Biswas A, Sharma KK (2018) Performance investigations of modified asymmetric blade H-Darrieus VAWT rotors. J Renew Sustain Energy. https://doi.org/10.1063/1.5026857

    Article  Google Scholar 

  42. Singh MA, Biswas A, Misra RD (2015) Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor. Renew Energy 76:381–387. https://doi.org/10.1016/j.renene.2014.11.027

    Article  Google Scholar 

  43. Sengupta AR, Biswas A, Gupta R (2017) The aerodynamics of high solidity unsymmetrical and symmetrical blade H-Darrieus rotors in low wind speed conditions. J Renew Sustain Energy. https://doi.org/10.1063/1.4999965

    Article  Google Scholar 

  44. Bin Liang Y, Zhang LX, Li EX et al (2014) Design considerations of rotor configuration for straight-bladed vertical axis wind turbines. Adv Mech Eng. https://doi.org/10.1155/2014/534906

    Article  Google Scholar 

  45. Rezaeiha A, Montazeri H, Blocken B (2018) Towards optimal aerodynamic design of vertical axis wind turbines: impact of solidity and number of blades. Energy 165:1129–1148. https://doi.org/10.1016/j.energy.2018.09.192

    Article  Google Scholar 

  46. Wang Y, Sun X, Dong X et al (2016) Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades. Energy Convers Manag 108:275–286. https://doi.org/10.1016/j.enconman.2015.11.003

    Article  Google Scholar 

  47. Rezaeiha A, Montazeri H, Blocken B (2018) Characterization of aerodynamic performance of vertical axis wind turbines: impact of operational parameters. Energy Convers Manag 169:45–77. https://doi.org/10.1016/j.enconman.2018.05.042

    Article  Google Scholar 

  48. Bianchini A, Balduzzi F, Bachant P et al (2017) Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment. Energy Convers Manag 136:318–328. https://doi.org/10.1016/j.enconman.2017.01.026

    Article  Google Scholar 

  49. Kalluvila JBS, Sreejith B (2018) Numerical and experimental study on a modified Savonius rotor with guide blades. Int J Green Energy 15:744–757. https://doi.org/10.1080/15435075.2018.1529574

    Article  Google Scholar 

  50. Rezaeiha A, Kalkman I, Blocken B (2017) CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment. Renew Energy 107:373–385. https://doi.org/10.1016/j.renene.2017.02.006

    Article  Google Scholar 

  51. Rezaeiha A, Montazeri H, Blocken B (2019) On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy 180:838–857. https://doi.org/10.1016/j.energy.2019.05.053

    Article  Google Scholar 

  52. Hashem I, Mohamed MH (2018) Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy 142:531–545. https://doi.org/10.1016/j.energy.2017.10.036

    Article  Google Scholar 

  53. Liang LXZYB, Jiao XHLQF, Guo J (2012) Aerodynamic performance prediction of straight-bladed vertical axis wind turbine based on CFD. Adv Mech Eng 2013:905379

    Google Scholar 

  54. Jafaryar M, Kamrani R, Gorji-bandpy M et al (2016) Numerical optimization of the asymmetric blades mounted on a vertical axis cross-flow wind turbine. Int Commun Heat Mass Transf 70:93–104. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.003

    Article  Google Scholar 

  55. Wang Y, Shen S, Li G et al (2018) Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes. Renew Energy 126:801–818. https://doi.org/10.1016/j.renene.2018.02.095

    Article  Google Scholar 

  56. Islam M, Ting DSK, Fartaj A (2008) Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renew Sustain Energy Rev 12:1087–1109. https://doi.org/10.1016/j.rser.2006.10.023

    Article  Google Scholar 

  57. Jones WP, Launder BE (1972) Two-equation of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15:301–314

    Article  Google Scholar 

  58. Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model. Turbul Heat Mass Transf 4(4):625–632. https://doi.org/10.4028/www.scientific.net/AMR.576.60

    Article  Google Scholar 

  59. Menter FR, Langtry RB, Likki SR et al (2006) A correlation-based transition model using local variables—Part I: model formulation. J Turbomach 128:413. https://doi.org/10.1115/1.2184352

    Article  Google Scholar 

  60. Langtry RB, Menter FR, Likki SR et al (2006) A correlation-based transition model using local variables—part II: test cases and industrial applications. J Turbomach 128:423. https://doi.org/10.1115/1.2184353

    Article  Google Scholar 

  61. Almohammadi KM, Ingham DB, Ma L, Pourkashan M (2013) Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 58:483–493. https://doi.org/10.1016/j.energy.2013.06.012

    Article  Google Scholar 

  62. Lin S, Lin Y, Bai C, Wang W (2016) Performance analysis of vertical-axis-wind-turbine blade with modified trailing edge through computational fluid dynamics. Renew Energy 99:654–662. https://doi.org/10.1016/j.renene.2016.07.050

    Article  Google Scholar 

  63. Guo Y, Li X, Sun L et al (2019) Aerodynamic analysis of a step adjustment method for blade pitch of a VAWT. J Wind Eng Ind Aerodyn 188:90–101. https://doi.org/10.1016/j.jweia.2019.02.023

    Article  Google Scholar 

  64. Biswas A, Gupta R (2014) Unsteady aerodynamics of a twist bladed H-Darrieus rotor in low Reynolds number flow. J Renew Sustain Energy. https://doi.org/10.1063/1.4878995

    Article  Google Scholar 

  65. Anderson JD Jr (1989) Fundamentals of aerodynamics design. Tata McGraw-Hill Education, New York

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank and acknowledge the Computational Lab facility, Department of Mechanical Engineering, NIT Silchar, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussain Mahamed Sahed Mostafa Mazarbhuiya.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazarbhuiya, H.M.S.M., Biswas, A. & Sharma, K.K. Low wind speed aerodynamics of asymmetric blade H-Darrieus wind turbine-its desired blade pitch for performance improvement in the built environment. J Braz. Soc. Mech. Sci. Eng. 42, 326 (2020). https://doi.org/10.1007/s40430-020-02408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02408-0

Keywords

Navigation