Skip to main content

Advertisement

Log in

Preparation and Pulsatile Release Evaluation of Teriparatide-Loaded Multilayer Implant Composed of Polyanhydride-Hydrogel Layers Using Spin Coating for the Treatment of Osteoporosis

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Teriparatide (PTH(1–34)), as one of the FDA-approved anabolic medications for postmenopausal osteoporosis treatment, shows anabolic effects in intermittent administration. In the current study, a multilayer implantable device was developed by spin-coating and dip-coating techniques for providing pulsatile pattern release of teriparatide, composed of polymeric and hydrogel layers.

Methods

Copolymers of poly [1,3-bis (p-carboxyphenoxy) propane-sebasic acid] (CPP-SA) with molar ratios of 20:80 and 10:90 were synthesized and characterized by GPC, 1HNMR, and FTIR. Swelling property and in vitro drug release from hyaluronic acid hydrogel were evaluated. The degradation behavior of the polymer layer and the morphology of the fabricated implant was evaluated by SEM images. An in vitro release study was done for evaluating the pulsatile release pattern. Histology assessment aimed to determine the biocompatibility of implants in rats. MTT assay was applied for cell cytotoxicity study. Plasma drug concentration and pharmacokinetic data were achieved by in vivo study.

Results

According to in vivo and in vitro data, the best formulation was CPP-SA (10:90) with a concentration of 20%. Histology assessment showed mild inflammation. MTT assay showed no significant toxicity compared with control in normal doses of the drug.

Conclusion

The pulsatile delivery of peptide the drug from the multilayer device with hyaluronic acid hydrogel and CPP-SA polymer alternative layers can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1:
Fig. 2:
Fig. 3:
Fig. 4:
Fig. 5:
Fig. 6:
Fig. 7:
Fig. 8:
Fig. 9:
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13:
Fig. 14:

Similar content being viewed by others

References

  1. Dang M, Koh AJ, Jin X, McCauley LK, Ma PX. Local pulsatile PTH delivery regenerates bone defect via enhanced bone remodeling in a cell-free scaffold. Biomaterials. 2017;114:1–9.

    Article  CAS  Google Scholar 

  2. Watts NB, Manson JE. Osteoporosis and fracture risk evaluation and management. JAMA. 2017;317:253–4.

    Article  CAS  Google Scholar 

  3. Shen Y, Gray DL, Martinez DS. Combined pharmacologic therapy in postmenopausal osteoporosis. Endocrinol Metab Clin. 2017;46:193–206.

    Article  Google Scholar 

  4. Khosla S, CHofbauer L. Osteoporosis treatment: recent developments and ongoing challenges. Diabetes Endocrinol. 2017;5:898–907.

    Google Scholar 

  5. Leder BZ. Parathyroid hormone and parathyroid hormone-related protein analogs in osteoporosis therapy. Curr Osteoporos Rep. 2017;15:110–9.

    Article  Google Scholar 

  6. Eswaramoorthy R, Chang CC, Wu SC, Wang GJ, Chang JK, Ho ML. Sustained release of PTH(1-34) from PLGA microspheres suppresses osteoarthritis progression in rats. Acta Biomater. 2012;8:2254–62.

    Article  CAS  Google Scholar 

  7. Ghadi R, Muntimadugu E, Domb AJ, Khan W, Zhang X. Synthetic biodegradable medical polymer: polyanhydrides. Science and Principles of Biodegradable and Bioresorbable Medical Polymers Materials and Properties (pp. 153–188). 2017. https://doi.org/10.1016/B978-0-08-100372-5.00005-2.

  8. HoLee S, HwiKim B, Gwon Park C, Lee C, Yoon Lim B, Bin Choy Y. Implantable small device enabled with magnetic actuation for on-demand and pulsatile drug delivery. J Control Release. 2018;286:224–30.

    Article  Google Scholar 

  9. Schroeter M, Wildemann B, Lendlein A. Biodegradable polymeric materials. Regenerative Medicine- from Protocol to Patient, 65–96. 2016.

  10. Wang J, Yang G, Guo X, Tang Z, Zhong Z, Zhou S. Redox-responsive polyanhydride micelles for cancer therapy. Biomaterials. 2014;35:3080–90.

    Article  CAS  Google Scholar 

  11. Kumar N, Krishnan M, Azzam T, Magora A, Ravikumar MN, Flanagan DR, et al. Analysis of fatty acid anhydrides and polyanhydrides. Anal Chim Acta. 2002;465:257–72.

    Article  CAS  Google Scholar 

  12. Haim-Zada M, Basu A, Hagigit T, Schlinger R, Grishko M, Kraminsky A, et al. Stable polyanhydride synthesized from sebacic acid and ricinoleic acid. J Control Release. 2017;257:156–62.

    Article  CAS  Google Scholar 

  13. Hozumi T, Kageyama T, Ohta S, Fukuda J, Ito T. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by schiff’s base formation. Biomacromolecules. 2018;19:288–97.

    Article  CAS  Google Scholar 

  14. Kodavaty J, Deshpande AP. Mechanical and swelling properties of poly (vinyl alcohol) and hyaluronic acid gels used in biomaterial systems - a comparative study. Def Sci J. 2014;64:222–9.

    Article  CAS  Google Scholar 

  15. Byeon HJ, Choi SH, Choi JS, Kim I, Shin BS, Lee ES, et al. Four-arm PEG cross-linked hyaluronic acid hydrogels containing PEGylated apoptotic TRAIL protein for treating pancreatic cancer. Acta Biomater. 2014;10:142–50.

    Article  CAS  Google Scholar 

  16. Bazzo GC, Macedo ATD, Crenca JP, Silva VE, Pereira EM, Zétola M, et al. Microspheres prepared with biodegradable PHBV and PLA polymers as prolonged-release system for ibuprofen: in vitro drug release and in vivo evaluation. Braz J Pharm Sci. 2012;48:773–80.

    Article  CAS  Google Scholar 

  17. Sathish S, Chandar Shekar B, Sathyamoorthy R. Nano polymer films by fast dip coating method for field effect transistor applications. Phys Procedia. 2013;49:166–76.

    Article  CAS  Google Scholar 

  18. Danglad-Flores J, Eickelmann S, Riegler H. Deposition of polymer films by spin casting: A quantitative analysis. Chem Eng Sci. 2018;179:257–64.

    Article  CAS  Google Scholar 

  19. Mangano F, Raspanti M, Maghaireh H, Mangano C. Scanning electron microscope (SEM) evaluation of the interface between a nanostructured calcium-incorporated dental implant surface and the human bone. Materials. 2017;10:1438.

    Article  Google Scholar 

  20. Shaikh HK, Kshirsagar RV, Patil SG. Mathematical models for drug release characterization: a review. World J Pharm Res. 2015;4:324–38.

    CAS  Google Scholar 

  21. Govindaraj S, Muthuraman MS. Systematic review on sterilization methods of implants and medical devices. Int J ChemTech Res. 2015;8:897–911.

    CAS  Google Scholar 

  22. Tomankova K, Polakova K, Pizova K, Binder S, Havrdova M, Kolarova M, et al. In vitro cytotoxicity analysis of doxorubicin-loaded/superparamagnetic iron oxide colloidal nanoassemblies on MCF7 and NIH3T3 cell lines. Int J Nanomedicine. 2015;10:949–96.

    Article  Google Scholar 

  23. Laurencin C, Domb A, Morris C, Brown V, Chasin M, McConnell R, et al. Poly(anhydride) administration in high doses in vivo: studies of biocompatibility and toxicology. J Biomed Mater Res. 1990;24:1463–81.

    Article  CAS  Google Scholar 

  24. Lyer SS, Barr WH, Karnes HT. Profiling in vitro drug release from subcutaneous implants: a review of current status and potential implications on drug product development. Biopharm Drug Dispos. 2006;27:157–70.

    Article  Google Scholar 

  25. Ghahremankhani AA, Dorkoosh FA. PLGA-PEG-PLGA tri-block copolymers as in situ gel-forming peptide Delivery system: effect of formulation properties on peptide release. Pharm Dev Technol. 2008;13:49–55.

    Article  CAS  Google Scholar 

  26. Hemshekhar Ram MM, Chandranayaka Larry ST, Kemparaju Kesturu SK, Girish S. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int J Biol Macromol. 2016;86:917–28.

    Article  Google Scholar 

  27. Köse GT, Kenar H, Hasirci N, Hasirci V. Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials. 2003;24:1949–58.

    Article  Google Scholar 

  28. Shen E, Kipper MJ, Dziadul B, Lim MK, Narasimhan B. Mechanistic relationships between polymer microstructure and drug release kinetics in bioerodible polyanhydrides. J Control Release. 2002;82:115–25.

    Article  CAS  Google Scholar 

  29. Dang M, Koh AJ, Danciu T, McCauley LK, Ma PX. Preprogrammed long-term systemic pulsatile delivery of parathyroid hormone to strengthen bone. Adv Healthc Mater. 2016;6(3):1600901. https://doi.org/10.1002/adhm.201600901.

    Article  CAS  Google Scholar 

  30. Gijpferich A. Mechanisms of polymer degradation and erosion. Biomoterials. 1996;17:103–14.

    Article  Google Scholar 

  31. Agarwal P, Rupenthal ID. Injectable implants for the sustained release of protein and peptide drugs. Drug Discov Today. 2013;18:337–49.

    Article  CAS  Google Scholar 

  32. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. Pore formation and pore closure in poly(D, L-lactide-co-glycolide) films. J Control Release. 2011b;150:142–9.

    Article  CAS  Google Scholar 

  33. Beugeling M, Grasmeijer N, Borna PA, Meulen M, Kooija RS, Schwengle K, et al. The mechanism behind the biphasic pulsatile drug release from physically mixed poly(DL-lactic(-co-glycolic) acid)-based compacts. Int J Pharm. 2018;551:195–202.

    Article  CAS  Google Scholar 

  34. Fox TG, Flory PJ. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys. 1950;21:581–91.

    Article  CAS  Google Scholar 

  35. Mylonaki I, Allémann E, Delie F, Jordan O. Imaging the porous structure in the core of degrading PLGA microparticles: the effect of molecular weight. J Control Release. 2018;286:231–9.

    Article  CAS  Google Scholar 

  36. Cojocaru V, Ranetti AE, Hinescu LG, Ionescu M, Cosmescu C, Potoarcă AG, et al. Formulation and evaluation of in vitro release kinetics of na3 cadtpa decorporation agent embedded in microemulsion-based gel formulation for topical delivery. FARMACIA. 2015;63:5.

    Google Scholar 

  37. Shoyele SA, Sivadas N, Cryan SA. The effects of excipients and particle engineering on the biophysical stability and aerosol performance of parathyroid hormone (1-34) prepared as a dry powder for inhalation. AAPS PharmSciTech. 2011;12:304–11.

    Article  CAS  Google Scholar 

  38. Narayanan D, Anitha A, Jayakumar R, Nair S, Chennazhi K. Synthesis, characterization and preliminary in vitro evaluation of PTH 1-34 loaded chitosan nanoparticles for osteoporosis. J Biomed Nanotechnol. 2012;8:98–106.

    Article  CAS  Google Scholar 

  39. Leong KW, D’Amore P, Marlettart M, Langer R. Bioerodible polyanhydrides as drug-carrier matrices; biocompatibility and chemical reactivity. J Biomed Mater Res. 1986;20:51–64.

    Article  CAS  Google Scholar 

  40. Kim J, Dadsetan M, Ameenuddin S, Windebank AJ, Yaszemski MJ, Lu L. In vivo biodegradation and biocompatibility of PEG/sebacic acid-based hydrogels using a cage implant system. J Biomed Mater Res A. 2010;95A:191–7. https://doi.org/10.1002/jbm.a.32810.

    Article  CAS  Google Scholar 

Download references

Funding

This research has been financially supported by Tehran University of Medical Sciences and Health Services (grant number 96-03-33-32293, 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Akbari Javar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (the ethics committee of Tehran University of Medical Sciences in accordance with the Helsinki declaration and national ethical guideline for medical research, ethics approval code: IR.TUMS.REC.1394.1167).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amani, N., Javar, H.A., Dorkoosh, F.A. et al. Preparation and Pulsatile Release Evaluation of Teriparatide-Loaded Multilayer Implant Composed of Polyanhydride-Hydrogel Layers Using Spin Coating for the Treatment of Osteoporosis. J Pharm Innov 16, 337–358 (2021). https://doi.org/10.1007/s12247-020-09453-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09453-1

Keywords

Navigation