Skip to main content

Advertisement

Log in

Optimal Control of Aquatic Diseases: A Case Study of Yemen’s Cholera Outbreak

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We propose a mathematical model for the transmission dynamics of some strains of the bacterium Vibrio cholerae, responsible for the cholera disease in humans. We prove that, when the basic reproduction number is equal to one, a transcritical bifurcation occurs for which the endemic equilibrium emanates from the disease-free point. A control function is introduced into the model, representing the distribution of chlorine water tablets for water purification. An optimal control problem is then proposed and analyzed, where the goal is to determine the fraction of susceptible individuals who should have access to chlorine water tablets in order to minimize the total number of new infections plus the total cost associated with the distribution of chlorine water tablets, over the considered period of time. Finally, we consider real data of the cholera outbreak in Yemen, from April 27, 2017 to April 15, 2018, choosing the values of the parameters of the uncontrolled model that fit the real data. Using our optimal control results, we show, numerically, that the distribution of chlorine water tablets could have stopped, in a fast way, the worst cholera outbreak that ever occurred in human history. Due to the critical situation of Yemen, we also simulate the case where only a small percentage of susceptible individuals has access to chlorine water tablets and obtain an optimal control solution that decreases, substantially, the maximum number of infective individuals affected by the outbreak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization: Cholera (2019). http://www.who.int/news-room/fact-sheets/detail/cholera. Accessed 17 Jan 2019

  2. Lemos-Paião, A.P., Silva, C.J., Torres, D.F.M.: An epidemic model for cholera with optimal control treatment. J. Comput. Appl. Math. 318, 168–180 (2017). https://doi.org/10.1016/j.cam.2016.11.002

    Article  MathSciNet  MATH  Google Scholar 

  3. World Health Organization: Weekly epidemiological record (WER), cholera vaccines. WHO position paper (2010). https://www.who.int/wer/2010/wer8513/en. Accessed 8 June 2018

  4. Shuai, Z., Tien, J.H., van den Driessche, P.: Cholera models with hyperinfectivity and temporary immunity. Bull. Math. Biol. 74(10), 2423–2445 (2012). https://doi.org/10.1007/s11538-012-9759-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Mwasa, A., Tchuenche, J.M.: Mathematical analysis of a cholera model with public health interventions. Biosystems 105(3), 190–200 (2011). https://doi.org/10.1016/j.biosystems.2011.04.001

    Article  Google Scholar 

  6. Miller Neilan, R.L., Schaefer, E., Gaff, H., Fister, K.R., Lenhart, S.: Modeling optimal intervention strategies for cholera. Bull. Math. Biol. 72(8), 2004–2018 (2010). https://doi.org/10.1007/s11538-010-9521-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Capasso, V., Paveri-Fontana, S.L.: A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Rev. Epidemiol. Santé Publique 27(2), 121–132 (1979)

    Google Scholar 

  8. Capone, F., De Cataldis, V., De Luca, R.: Influence of diffusion on the stability of equilibria in a reaction–diffusion system modeling cholera dynamic. J. Math. Biol. 71(5), 1107–1131 (2015). https://doi.org/10.1007/s00285-014-0849-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Codeço, C.T.: Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1(1), 14 (2001). https://doi.org/10.1186/1471-2334-1-1

    Article  Google Scholar 

  10. Hartley, D.M., Morris Jr., J.G., Smith, D.L.: Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med. 3(1), 63–69 (2006). https://doi.org/10.1371/journal.pmed.0030007

    Article  Google Scholar 

  11. Hove-Musekwa, S.D., Nyabadza, F., Chiyaka, C., Das, P., Tripathi, A., Mukandavire, Z.: Modelling and analysis of the effects of malnutrition in the spread of cholera. Math. Comput. Model. 53(9–10), 1583–1595 (2011). https://doi.org/10.1016/j.mcm.2010.11.060

    Article  MathSciNet  MATH  Google Scholar 

  12. Joh, R.I., Wang, H., Weiss, H., Weitz, J.S.: Dynamics of indirectly transmitted infectious diseases with immunological threshold. Bull. Math. Biol. 71(4), 845–862 (2009). https://doi.org/10.1007/s11538-008-9384-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Lemos-Paião, A.P., Silva, C.J., Torres, D.F.M.: A cholera mathematical model with vaccination and the biggest outbreak of world’s history. AIMS Math. 3(4), 448–463 (2018). https://doi.org/10.3934/Math.2018.4.448

    Article  MATH  Google Scholar 

  14. Mukandavire, Z., Mutasa, F.K., Hove-Musekwa, S.D., Dube, S., Tchuenche, J.M.: Mathematical Analysis of a Cholera Model with Carriers and Assessing the Effects of Treatment, pp. 1–37. Nova Science Publishers, Inc., New York (2008)

    Google Scholar 

  15. Pascual, M., Chaves, L.F., Cash, B., Rodó, X., Yunus, M.: Predicting endemic cholera: the role of climate variability and disease dynamics. Clim. Res. 36(2), 131–140 (2008). https://doi.org/10.3354/cr00730

    Article  Google Scholar 

  16. Tognotti, E.: Lessons from the history of quarantine, from plague to influenza A. Emerg. Infect. Dis. 19(2), 254–259 (2013). https://doi.org/10.3201/eid1902.120312

    Article  Google Scholar 

  17. Matovinovic, J.: A short history of quarantine (Victor C. Vaughan). Univ. Mich. Med. Cent. J. 35(4), 224–228 (1969)

    Google Scholar 

  18. Centers for Disease Control and Prevention: Quarantine and isolation (2014). http://www.cdc.gov/quarantine/historyquarantine.html. Accessed 8 June 2018

  19. The Telegraph News: ’race against time’ to curb cholera outbreak in Yemen (2018). https://www.telegraph.co.uk/news/0/race-against-time-curb-cholera-outbreak-yemen. Accessed 8 June 2018

  20. Wikipedia: 2016–19 Yemen cholera outbreak (2019). http://en.m.wikipedia.org/wiki/2016-18_Yemen_cholera_outbreak. Accessed 12 Oct 2019

  21. World Health Organization: Yemen: Weekly epidemiological bulletin W15 2018 (2018). http://www.emro.who.int/images/stories/yemen/week_15.pdf?ua=1. Accessed 21 May 2018

  22. Nishiura, H., Tsuzuki, S., Yuan, B., Yamaguchi, T., Asai, Y.: Transmission dynamics of cholera in Yemen, 2017: a real time forecasting. Theor. Biol. Med. Model. 14(1), 8 (2017). https://doi.org/10.1186/s12976-017-0061-x

    Article  Google Scholar 

  23. Sardar, T., Mukhopadhyay, S., Bhowmick, A.R., Chattopadhyay, J.: An optimal cost effectiveness study on zimbabwe cholera seasonal data from 2008–2011. PLoS ONE 8(12), e81,231 (2013). https://doi.org/10.1371/journal.pone.0081231

    Article  Google Scholar 

  24. Cesari, L.: Optimization—Theory and Applications, Applications of Mathematics (New York), vol. 17. Springer, New York (1983). https://doi.org/10.1007/978-1-4613-8165-5

    Book  Google Scholar 

  25. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, Berlin (1975)

    Book  Google Scholar 

  26. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt. Interscience Publishers John Wiley & Sons, Inc. , New York, London (1962)

  27. Osmolovskii, N.P., Maurer, H.: Applications to regular and bang-bang control. In: Advances in Design and Control, vol. 24. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2012). https://doi.org/10.1137/1.9781611972368

  28. Beretta, E., Kuang, Y.: Modeling and analysis of a marine bacteriophage infection. Math. Biosci. 149(1), 57–76 (1998). https://doi.org/10.1016/S0025-5564(97)10015-3

    Article  MathSciNet  MATH  Google Scholar 

  29. Siekmann, I., Malchow, H., Venturino, E.: An extension of the Beretta–Kuang model of viral diseases. Math. Biosci. Eng. 5(3), 549–565 (2008). https://doi.org/10.3934/mbe.2008.5.549

    Article  MathSciNet  MATH  Google Scholar 

  30. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002). https://doi.org/10.1016/S0025-5564(02)00108-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Diekmann, O., Heesterbeek, J.A.P., Roberts, M.G.: The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7(47), 873–885 (2010). https://doi.org/10.1098/rsif.2009.0386

    Article  Google Scholar 

  32. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004). https://doi.org/10.3934/mbe.2004.1.361

    Article  MathSciNet  MATH  Google Scholar 

  33. Carr, J.: Applications of Centre Manifold Theory, Applied Mathematical Sciences, vol. 35. Springer, New York (1981)

    Book  Google Scholar 

  34. International Medical Corps UK: Emergency treatment and prevention of cholera in Yemen (2018). https://www.internationalmedicalcorps.org.uk/emergency-treatment-and-prevention-cholera-yemen. Accessed 25 May 2018

  35. World Health Organization: Yemen: Weekly cholera bulletins

  36. Index Mundi: Birth rate of Yemen (2018). https://www.indexmundi.com/g/g.aspx?c=ym&v=25. Accessed 6 June 2018

  37. Index Mundi: Death rate of Yemen (2018). https://www.indexmundi.com/g/g.aspx?c=ym&v=26. Accessed 6 June 2018

  38. Worldometers: Yemen population (2018). http://www.worldometers.info/world-population/yemen-population. Accessed 6 June 2018

  39. Jornal de Notícias: Portugueses em Moçambique ajudam a purificar água e cortar árvores (2019). http://www.jn.pt/mundo/interior/portugueses-em-mocambique-ajudam-a-purificar-agua-e-cortar-arvores-10734255.html. Accessed 12 Oct 2019

  40. Buonomo, B., Chitnis, N., d’Onofrio, A.: Seasonality in epidemic models: a literature review. Ric. Mat. 67(1), 7–25 (2018). https://doi.org/10.1007/s11587-017-0348-6

    Article  MathSciNet  MATH  Google Scholar 

  41. Pascual, M., Rodó, X., Ellner, S.P., Colwell, R., Bouma, M.J.: Cholera dynamics and el niño-southern oscillation. Science 289(5485), 1766–1769 (2000). https://doi.org/10.1126/science.289.5485.1766

    Article  Google Scholar 

  42. Pourabbas, E., d’Onofrio, A., Rafanelli, M.: A method to estimate the incidence of communicable diseases under seasonal fluctuations with application to cholera. Appl. Math. Comput. 118(2–3), 161–174 (2001). https://doi.org/10.1016/S0096-3003(99)00212-X

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Portuguese Foundation for Science and Technology (FCT) within Projects UIDB/04106/2020 and UIDP/04106/2020 (CIDMA) and PTDC/EEI-AUT/2933/2014 (TOCCATA), funded by Project 3599 – Promover a Produção Científica e Desenvolvimento Tecnológico e a Constituição de Redes Temáticas and FEDER funds through COMPETE 2020, Programa Operacional Competitividade e Internacionalização (POCI). Lemos-Paião is also supported by the Ph.D. fellowship PD/BD/114184/2016; Silva by national funds (OE), through FCT, I.P., in the scope of the framework contract foreseen in the numbers 4, 5, and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. The research of Ezio Venturino has been partially supported by the project “Metodi numerici e computazionali per le scienze applicate” of the Dipartimento di Matematica “Giuseppe Peano”. The authors are very grateful to two anonymous referees for several constructive remarks and questions that helped them to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delfim F. M. Torres.

Additional information

Communicated by Alberto d’Onofrio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ezio Venturino is a member of the INdAM reseach group GNCS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos-Paião, A.P., Silva, C.J., Torres, D.F.M. et al. Optimal Control of Aquatic Diseases: A Case Study of Yemen’s Cholera Outbreak. J Optim Theory Appl 185, 1008–1030 (2020). https://doi.org/10.1007/s10957-020-01668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01668-z

Keywords

Mathematics Subject Classification

Navigation