Skip to main content

Advertisement

Log in

The preparation of graphite/silicon@carbon composites for lithium-ion batteries through molten salts electrolysis

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-specific-capacity materials are crucial for the high-energy-density lithium-ion secondary batteries as the automakers and customers are both eager to extend the cruising range of electric vehicles. The current commercial silicon/carbon composites are based on the mechanical mixture of silicon and graphite, but this weak combination is not suitable for the higher-capacity materials. Here, low-cost raw materials are used for the preparation of a graphite/silicon@carbon composite negative electrode material, which synergizes ball milling, molten salts electrolysis and carbon coating. Silica is in situ electrochemically reduced to silicon on the flaky graphite serving as the conducting substrate during the electrolysis process. It is found that ball milling increases the active sites on the basal plane of graphite, which is beneficial for the nucleation and growth of the silicon, and enhances the bonding of silicon particles and graphite. As for the electrochemical results of coin-type cells, this graphite/silicon@carbon composite material exhibits a better cycle performance than the commercial Si/C 650 silicon-based composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106

    Article  CAS  Google Scholar 

  2. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24

    Article  CAS  Google Scholar 

  3. Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7:A93–A96

    Article  CAS  Google Scholar 

  4. Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154:A103–A108

    Article  CAS  Google Scholar 

  5. McDowell MT, Lee SW, Nix WD, Cui Y (2013) 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater 25:4966–4985

    Article  CAS  Google Scholar 

  6. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat Nanotechnol 7:310–315

    Article  CAS  Google Scholar 

  7. Ohara S, Suzuki J, Sekine K, Takamura T (2004) A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J Power Sources 136:303–306

    Article  CAS  Google Scholar 

  8. Domi Y, Usui H, Sugimoto K, Sakaguchi H (2019) Effect of silicon crystallite size on its electrochemical performance for lithium-ion batteries. Energy Technol 7:1800946

    Article  Google Scholar 

  9. Cui L-F, Ruffo R, Chan CK, Peng H, Cui Y (2009) Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–495

    Article  CAS  Google Scholar 

  10. Sun L, Xie J, Jin Z (2019) Different dimensional nanostructured silicon materials: from synthesis methodology to application in high-energy lithium-ion batteries. Energy Technol 7:1900962

    Article  CAS  Google Scholar 

  11. Chen P, Huang W, Liu H, Cao Z, Yu Y, Liu Y, Shan Z (2019) Enhanced cyclability of silicon anode via synergy effect of polyimide binder and conductive polyacrylonitrile. J Mater Sci 54:8941–8954. https://doi.org/10.1007/s10853-019-03518-4

    Article  CAS  Google Scholar 

  12. Yu C, Chen X, Xiao Z, Lei C, Zhang C, Lin X, Shen B, Zhang R, Wei F (2019) Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano Lett 19:5124–5132

    Article  CAS  Google Scholar 

  13. Liu W, Xu H, Qin H, Lv Y, Zhu G, Lei X, Lin F, Zhang Z, Wang L (2020) Rapid coating of asphalt to prepare carbon-encapsulated composites of nano-silicon and graphite for lithium battery anodes. J Mater Sci 55:4382–4394. https://doi.org/10.1007/s10853-019-04313-x

    Article  CAS  Google Scholar 

  14. Shi M, Nie P, Fu R, Fang S, Li Z, Dou H, Zhang X (2019) Catalytic growth of graphitic carbon-coated silicon as high-performance anodes for lithium storage. Energy Technol 7:1900502

    Article  CAS  Google Scholar 

  15. Zhang Y, Li K, Ji P, Chen D, Zeng J, Sun Y, Zhang P, Zhao J (2017) Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries. J Mater Sci 52:3630–3641. https://doi.org/10.1007/s10853-016-0503-6

    Article  CAS  Google Scholar 

  16. Chang J, Huang X, Zhou G, Cui S, Chen J (2014) Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv Mater 26:758–764

    Article  CAS  Google Scholar 

  17. Wang J, Liao L, Lee HR, Shi F, Huang W, Zhao J, Pei A, Tang J, Zheng X, Chen W, Cui Y (2019) Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 61:404–410

    Article  CAS  Google Scholar 

  18. Chen GZ, Fray DJ, Farthing TW (2000) Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407:361–364

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhang Y, Li X, Liu J, Zhang M, Yang X, Huang M, Xu M, Dong P, Zhou Z (2019) Low-cost fabrication of silicon nanowires by molten salt electrolysis and their electrochemical performances as lithium-ion battery anodes. JOM. https://doi.org/10.1007/s11837-019-03926-6

    Article  Google Scholar 

  20. Jiao S, Zhu H (2006) Novel metallurgical process for titanium production. J Mater Res 21:2172–2175

    Article  CAS  Google Scholar 

  21. Kongstein OE, Wollan C, Sultana S, Haarberg GM (2007) Electrorefining of silicon in molten calcium chloride. ECS Trans 3:357–361

    Article  CAS  Google Scholar 

  22. Wang D, Zhou C, Cao B, Xu Y, Zhang D, Li A, Zhou J, Ma Z, Chen X, Song H (2019) One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Mater. https://doi.org/10.1016/j.ensm.2019.07.045

    Article  Google Scholar 

  23. Zoval JV, Lee J, Gorer S, Penner RM (1998) Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces. J Phys Chem B 102:1166–1175

    Article  CAS  Google Scholar 

  24. Li W, Virtanen JA, Penner RM (1992) Nanometer-scale electrochemical deposition of silver on graphite using a scanning tunneling microscope. Appl Phys Lett 60:1181–1183

    Article  CAS  Google Scholar 

  25. Kariuki JK, McDermott MT (1999) Nucleation and growth of functionalized aryl films on graphite electrodes. Langmuir 15:6534–6540

    Article  CAS  Google Scholar 

  26. Xing T, Li LH, Hou L, Hu X, Zhou S, Peter R, Petravic M, Chen Y (2013) Disorder in ball-milled graphite revealed by Raman spectroscopy. Carbon 57:515–519

    Article  CAS  Google Scholar 

  27. Yang J, Lu S, Kan S, Zhang X, Du J (2009) Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride. Chem Commun 22:3273–3275

    Article  Google Scholar 

  28. Fang S, Wang H, Yang J, Yu B, Lu S (2016) Formation of Si nanowires by the electrochemical reduction of SiO2 with Ni or NiO additives. Faraday Discuss 190:433–449

    Article  CAS  Google Scholar 

  29. Zhang J, Fang S, Qi X, Yu Z, Wu Z, Yang J, Lu S (2020) Preparation of high-purity straight silicon nanowires by molten salt electrolysis. J Energy Chem 40:171–179

    Article  Google Scholar 

  30. Yu Z, Wang N, Fang S, Qi X, Gao Z, Yang J (2019) Pilot-plant production of high-performance silicon nanowires by molten salt electrolysis of silica. Eng Chem Res, Ind. https://doi.org/10.1021/acs.iecr.9b04430

    Book  Google Scholar 

  31. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  CAS  Google Scholar 

  32. Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106

    Article  Google Scholar 

  33. Nohira T, Yasuda K, Ito Y (2003) Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon. Nat Mater 2:397–401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China [Grant Number 2016YFB0100400] and the National Natural Science Foundation of China [Grant Number 51604032].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanyu Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Yu, B., Qi, X. et al. The preparation of graphite/silicon@carbon composites for lithium-ion batteries through molten salts electrolysis. J Mater Sci 55, 10155–10167 (2020). https://doi.org/10.1007/s10853-020-04756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04756-7

Navigation