Skip to main content
Log in

The effect of different process parameters on the TiCl4/internal donor/MgCl2/AlEt3 catalytic system using external donor and cyclohexylchloride

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this work, the effects of different process parameters were investigated on the performance of TiCl4/internal donor/MgCl2/AlEt3 catalytic system and produced polyethylene in a semi-batch stirred reactor. Various methods such as Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscope (SEM), sieve shaker and melt flow index (MFI) measurement were used to investigate the catalyst activity and final polyethylene product. The results showed that cyclohexylchloride as promotor, in the presence of external donor, increased the catalyst activity up to 110% at optimum ratio to titanium. On the other hand, the polymer particle size and fine particles, which were directly related to the catalyst activity in the most cases, increased up to 15% in the presence of optimal halocarbon/Ti ratio and decreased up to 45% using hydrogen in the studied range. Also, in the optimal ratio, cyclohexylchloride increased the active site concentration and as a result, the MFI increased significantly. Also at low agitator speeds, due to low heat and mass transfer, the catalyst particles were severely fragmented and the particle size was decreased clearly. The results also showed that due to the special catalyst structure, pre-polymerization with propylene increased the catalyst activity by approximately two times compared to ethylene pre-polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen Y, Zou H, Liang M, Liu P (2013) Rheological, thermal, and morphological properties of low-density polyethylene/ultra-high-molecular-weight polyethylene and linear low-density polyethylene/ultra-high-molecular-weight polyethylene blends. J Appl Polym Sci 129:945–953

    Article  CAS  Google Scholar 

  2. Noorunnisa Khanam P, Al Ali AlMaadeed M (2015) Processing and characterization of polyethylene-based composites. Adv Manuf Polym Compos Sci 1:63–79

    Google Scholar 

  3. Feldman D (2008) Polymer history. Des Monomers Polym 11:1–15

    Article  CAS  Google Scholar 

  4. Galli P, Vecellio G (2004) Polyolefins: the most promising large-volume materials for the 21st century. J Polym Sci A Polym Chem 42:396–415

    Article  CAS  Google Scholar 

  5. Knuuttila H, Lehtinen A, Nummila-Pakarinen A (2004) Advanced polyethylene technologies—controlled material properties. In: Albertsson AC (ed) Long term properties of polyolefins. Advances in polymer science, vol 169. Springer, Berlin, pp 13–27

    Chapter  Google Scholar 

  6. Wang D, Yang G, Guo F, Wang J, Jiang Y (2018) Progress in technology and catalysts for continuous stirred tank reactor type slurry phase polyethylene processes. Petrol Chem 58:264–273

    Article  CAS  Google Scholar 

  7. Xia X, Liu Y, Zhang J, Wang X, Gao P, Qiao S, Yin M, Li W, Zhang T, Peng R, Chen Y, Zhang Z (2019) Spherical magnesium halide adduct, catalyst component and catalyst for olefin polymerization prepared therefrom. US Pat 10,239,969 B2

  8. Smit M, Zheng X, Loos J, Chadwick JC, Koning CE (2006) Effects of propylene prepolymerization on ethylene/1-hexene and ethylene/1-octene copolymerization with an immobilized metallocene catalyst. J Polym Sci A Polym Chem 44:6652–6657

    Article  CAS  Google Scholar 

  9. Soares JBP, Hamielec AE (1996) Effect of hydrogen and of catalyst prepolymerization with propylene on the polymerization kinetics of ethylene with a non-supported heterogeneous Ziegler-Natta catalyst. Polymer 37:4599–4605

    Article  CAS  Google Scholar 

  10. Garoff T, Johansson S, Pesonen K, Waldvogel P, Lindgren D (2002) Decrease in activity caused by hydrogen in Ziegler-Natta ethene polymerization. Eur Polym J 38:121–132

    Article  CAS  Google Scholar 

  11. Panchenko VN, Vorontsova LV, Zakharov VA (2017) Ziegler-Natta catalysts for propylene polymerization – Interaction of an external donor with the catalyst. Polyolefins J 4:87–97

    CAS  Google Scholar 

  12. Bahri-Laleh N, Abbas-Abadi MS, Haghighi MN, Akbari Z, Tavasoli MR, Mirjahanmardi SH (2010) Effect of halocarbon promoters on polyethylene properties using MgCl2 (ethoxide type)/TiCl4/AlEt3/H2 catalyst system. J Appl Polym Sci 117:1780–1786

    CAS  Google Scholar 

  13. Bahri-Laleh N, Arabi H, Mehdipor-Ataei S, Haghighi MN, Zohuri G, Seifali M, Akbari Z (2012) Activation of Ziegler-Natta catalysts by organohalide promoters: a combined experimental and density functional theory study. J Appl Polym Sci 123:2526–2533

    Article  CAS  Google Scholar 

  14. Abbas-Abadi MS (2017) The production of high efficiency Ziegler-Natta catalyst with dual active sites nature using cyclohexyl chloride as promoter with super activity and produced superior polyethylene with controllable molecular weight distribution. Des Monomers Polym 20:524–531

    Article  Google Scholar 

  15. Abbas-Abadi MS, Haghighi MN, Bahri Laleh N, Akbari Z, Tavasoli MR, Mirjahanmardi SH (2015) Polyolefin production using an improved catalyst system. US Pat 9,035,000 B2

  16. Cann KJ, Nicoletti JW, Vasnetsov SA (1994) Ethylene/propylene copolymer rubbers. US Pat 5,480,850A

  17. Bahri-Laleh N, Hanifpour A, Mirmohammadi SA, Poater A, Nekoomanesh-Haghighi M, Talarico G, Cavallo L (2018) Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Prog Polym Sci 84:89–114

    Article  CAS  Google Scholar 

  18. Yang Y, Kim H, Lee J, Paik H, Jang HG (2000) Roles of chloro compound in homogeneous [Cr(2-ethylhexanoate)3/2,5-dimethylpyrrole/triethylaluminum/chloro compound] catalyst system for ethylene trimerization. Appl Catal A Gen 193:29–38

    Article  CAS  Google Scholar 

  19. Jiang B, He F, Yang P, Zhang Z, Weng Y, Cheng Z, Fu Z, Fan Z (2019) Enhancing stereoselectivity of propylene polymerization with MgCl2-supported Ziegler-Natta catalysts by electron donor: strong effects of titanium dispersion state. Catal Commun 121:38–42

    Article  CAS  Google Scholar 

  20. Wang Q, Murayama N, Liu B, Terano M (2005) Effects of electron donors on active sites distribution of MgCl2-supported Ziegler-Natta catalysts investigated by multiple active sites model. Macromol Chem Phys 206:961–966

    Article  CAS  Google Scholar 

  21. Taniike T, Terano M (2013) The use of donors to increase the isotacticity of polypropylene. In: Kaminsky W (ed) Polyolefins: 50 years after Ziegler and Natta I. Advances in Polymer Science, vol 257. Springer, Berlin

    Google Scholar 

  22. Bukatov GD, Zakharov VA, Barabanov AA (2005) Mechanism of olefin polymerization on supported Ziegler-Natta catalysts based on data on the number of active centers and propagation rate constants. Kinet Catal 46:166–176

    Article  CAS  Google Scholar 

  23. Luo H-K, Tang R-G, Yang H, Zhao Q-F, An J-Y (2000) Studies on highly efficient promoters for titanium-based Ziegler-Natta catalyst for ethylene polymerization. Appl Catal A Gen 203:269–273

    Article  CAS  Google Scholar 

  24. Sukulova VV, Barabanov AA, Mikenas TB, Matsko MA, Zakharov VA (2018) Effect of hydrogen on the number of active centers and the propagation rate constant at ethylene polymerization over titanium-magnesium Ziegler-Natta catalysts. Mol Catal 445:299–306

    Article  CAS  Google Scholar 

  25. Bialek M, Czaja K (2000) The effect of the comonomer on the copolymerization of ethylene with long chain α-olefns using Ziegler-Natta catalysts supported on MgCl2(THF)2. Polymer 41:7899–7904

    Article  CAS  Google Scholar 

  26. Chien JCW, Nozaki T (1993) Ethylene–hexene copolymerization by heterogeneous and homogeneous Ziegler-Natta catalysts and the “comonomer” effect. J Polym Sci A Polym Chem 31:227–237

    Article  CAS  Google Scholar 

  27. Senso N, Praserthdam P, Jongsomjit B, Taniike T, Terano M (2011) Effects of Ti oxidation state on ethylene, 1-hexene comonomer polymerization by MgCl2-supported Ziegler-Natta catalysts. Polym Bull 67:1979–1989

    Article  CAS  Google Scholar 

  28. Jaber IA, Ray WH (1993) Polymerization of olefins through heterogeneous catalysis. XIV. The influence of temperature in the solution copolymerization of ethylene. J Appl Polym Sci 50:201–215

    Article  CAS  Google Scholar 

  29. Mülhaupt R (2003) Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler's catalysts. Macromol Chem Phys 204:289–327

    Article  Google Scholar 

  30. Abedi S, Majdabadi-Farahani N, Daftari-Besheli M, Ghasempour H, Azadi F (2015) Promoting ethylene polymerization through cocatalyst modification. Polym Bull 72:2377–2388

    Article  CAS  Google Scholar 

  31. Chauvin F, Alb AM, Bertin D, Tordo P, Reed WF (2002) Kinetics and molecular weight evolution during controlled radical polymerization. Macromol Chem Phys 203:2029–2041

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Seifali Abbas-Abadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas-Abadi, M.S., Rashedi, R., Sepahi, A. et al. The effect of different process parameters on the TiCl4/internal donor/MgCl2/AlEt3 catalytic system using external donor and cyclohexylchloride. Iran Polym J 29, 659–667 (2020). https://doi.org/10.1007/s13726-020-00829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00829-1

Keywords

Navigation