Skip to main content

Advertisement

Log in

Construction of MnO2/micro-nano Ni-filled Ni foam for high-performance supercapacitors application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The MnO2/Micro-nano Ni-filled Ni foam (MNFNF) hybrids were systematically studied as supercapacitor electrodes. Micro-nano Ni-filled Ni foam (MNFNF) was prepared via a facile NiC2O2H2O coating process on foam, followed by sintering treatment, and then employed as substrate for electrodeposition of MnO2. The morphology of the MNFNF substrate exhibited an obviously second-porous structure, deriving from dehydration, decarboxylation, and the lattice contraction occurred in the sintering treatment process of NiC2O2H2O. The structure of pores was irregular with 0.05~2 μm in diameter, and the pore walls were composed of nanoparticles with 200~500 nm in diameter. Such porous MNFNF not only provided a conductive network to enhance the charge transport and mass transfer in the electrochemical process but also achieved a large MnO2 mass loading capacity. Electrochemical test showed the MnO2/MNFNF electrode exhibited a mass specific capacitance (SC) of 723.7 F g−1 and an areal specific capacitance of 1.16 F cm−2 at a current rate of 0.25 A g−1. The asymmetric supercapacitor device based on the MnO2/MNFNF electrode and active carbon electrode could supply an energy density of 24.5 Wh kg−1 at the maximum power density of 4.4 kW kg−1. Meanwhile, the supercapacitor device also exhibited a good cycling stability along with 93.2% specific capacitance retained after 5000 cycles. These results demonstrated that the MnO2/MNFNF electrode could be one of the potential electrode material for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baptista JM, Sagu JS, Upul Wijayantha KG, Lobato K (2019) State-of-the-art materials for high power and high energy supercapacitors: performance metrics and obstacles for the transition from lab to industrial scale—a critical approach. Chem Eng J 374:1153–1179. https://doi.org/10.1016/j.cej.2019.05.207

    Article  CAS  Google Scholar 

  2. Xing T, Ouyang Y, Zheng L, Wang X, Liu H, Chen M, Yu R, Wang X, Wu C (2020) Free-standing ternary metallic sulphides/Ni/C-nanofiber anodes for high-performance lithium-ion capacitors. J Energy Chem 42:108–115. https://doi.org/10.1016/j.jechem.2019.06.002

  3. Yuksel R, Buyukcakir O, Panda PK, Lee SH, Jiang Y, Singh D, Hansen S, Adelung R, Mishra YK, Ahuja R, Ruoff RS (2020) Necklace-like nitrogen-doped tubular carbon 3D frameworks for electrochemical energy storage. Adv Funct Mater. https://doi.org/10.1002/adfm.201909725

  4. Cheng F, Yang X, Zhang S, Lu W (2020) Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J Power Sources 450:227678. https://doi.org/10.1016/j.jpowsour.2019.227678

    Article  CAS  Google Scholar 

  5. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publisher, New York

    Book  Google Scholar 

  6. Li M, He H (2018) Nickel-foam-supported ruthenium oxide/graphene sandwich composite constructed via one-step electrodeposition route for high-performance aqueous supercapacitors. Appl Surf Sci 439:612–622. https://doi.org/10.1016/j.apsusc.2018.01.064

    Article  CAS  Google Scholar 

  7. Kumar A, Sanger A, Kumar A, Mishra YK, Chandra R (2016) Performance of high energy density symmetric supercapacitor based on sputtered MnO2 Nanorods. Chemistry Select 1:3885–3891. https://doi.org/10.1002/slct.201600757

  8. Liu A, Zhang H, Wang G, Zhang J, Zhang S (2018) Sandwich-like NiO/rGO nanoarchitectures for 4 V solid-state asymmetric-supercapacitors with high energy density. Electrochim Acta 283:1401–1410. https://doi.org/10.1016/j.electacta.2018.07.099

    Article  CAS  Google Scholar 

  9. Zhou Y, Wang Y, Wang J, Lin L, Wu X, He D (2018) Controlled synthesis and characterization of hybrid Sn-doped Co3O4 nanowires for supercapacitors. Mater Lett 216:248–251. https://doi.org/10.1016/j.matlet.2018.01.047

    Article  CAS  Google Scholar 

  10. Ouyang Y, Huang R, Xia X, Ye H, Jiao X, Wang L, Lei W, Hao Q (2019) Hierarchical structure electrodes of NiO ultrathin nanosheets anchored to NiCo2O4 on carbon cloth with excellent cycle stability for asymmetric supercapacitors. Chem Eng J 355:416–427. https://doi.org/10.1016/j.cej.2018.08.142

    Article  CAS  Google Scholar 

  11. Wei X, Li Y, Peng H, Gao D, Ou Y, Yang Y, Hu J, Zhang Y, Xiao P (2019) A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application. Chem Eng J 355:336–340. https://doi.org/10.1016/j.cej.2018.08.009

    Article  CAS  Google Scholar 

  12. Liu X, Wang J, Yang G (2018) Amorphous nickel oxide and crystalline manganese oxide nanocomposite electrode for transparent and flexible supercapacitor. Chem Eng J 347:101–110. https://doi.org/10.1016/j.cej.2018.04.070

    Article  CAS  Google Scholar 

  13. Zhang Y, Guo WW, Zheng TX, Zhang YX, Fan X (2018) Engineering hierarchical diatom@CuO@MnO2 hybrid for high performance supercapacitor. Appl Surf Sci 427:1158–1165. https://doi.org/10.1016/j.apsusc.2017.09.064

    Article  CAS  Google Scholar 

  14. Bu X, Zhang Y, Su L, Dou Q, Xue Y, Lu X (2019) A 2.4V asymmetric supercapacitor based on cation-intercalated manganese oxide nanosheets in a low-cost “water-in-salt” electrolyte. Ionics 25:6007–6015. https://doi.org/10.1007/s11581-019-03141-y

    Article  CAS  Google Scholar 

  15. Radhamani AV, Surendra MK, Ramachandra Ra MS (2018) Zn doped δMnO2 nano flakes: an efficient electrode material for aqueous and solid state asymmetric supercapacitors. Appl Surf Sci 450:209–218. https://doi.org/10.1016/j.apsusc.2018.04.081

    Article  CAS  Google Scholar 

  16. Kong SY, Cheng K, Ouyang T, Ye K, Wang GL, Cao DX (2017) Freestanding MnO2 nanoflakes on carbon nanotube covered nickel foam as a 3D binder-free supercapacitor electrode with high performance. J Electroanal Chem 786:35–42. https://doi.org/10.1016/j.jelechem.2017.01.005

    Article  CAS  Google Scholar 

  17. Aziz RA, Jose R (2016) Charge storage capability of tunnel MnO2 and alkaline layered Na-MnO2 as anode material for aqueous asymmetry supercapacitor. J Electroanal Chem 799:538–546. https://doi.org/10.1016/j.jelechem.2017.06.014

    Article  CAS  Google Scholar 

  18. Xu GR, Shi JJ, Dong WH, Wen Y, Min XP, Tang AP (2015) One-pot synthesis of a Ni-Mn3O4 nanocomposite for supercapacitors. J Alloys Compd 630:266–271. https://doi.org/10.1016/j.jallcom.2015.01.067

    Article  CAS  Google Scholar 

  19. Tseng LH, Hsiao CH, Nguyen DD, Hsieh PY, Lee CY, Tai NH (2018) Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochim Acta 266:284–292. https://doi.org/10.1016/j.electacta.2018.02.029

    Article  CAS  Google Scholar 

  20. Kulkarni S, Puthusseri D, Thakur S, Banpurkar A, Patil S (2017) Hausmannite manganese oxide cathodes for supercapacitors: surface wettability and electrochemical properties. Electrochim Acta 231:460–467. https://doi.org/10.1016/j.electacta.2017.01.165

    Article  CAS  Google Scholar 

  21. Xu JS, Sun YD, Lu MJ, Wang L, Zhang J, Qian JH, Kim EJ (2017) Fabrication of porous Mn2O3 microsheet arrays on nickel foam as high-rate electrodes for supercapacitors. J Alloys Compd 717:108–115. https://doi.org/10.1016/j.jallcom.2017.04.239

    Article  CAS  Google Scholar 

  22. Xu GR, Min XP, Chen QL, Wen Y, Tang AP, Song HS (2017) Sonochemical synthesis of a Mn3O4/MnOOH nanocomposite for electrochemical energy storage. J Alloys Compd 691:1018–1023. https://doi.org/10.1016/j.jallcom.2016.08.309

    Article  CAS  Google Scholar 

  23. Xu GR, Xie CP, Wen Y, Tang AP, Song HS (2019) Mn(OH)2 electrodeposited on secondary porous Ni nano-architecture foam as high-performance electrode for supercapacitors. Ionics 25:3287–3298. https://doi.org/10.1007/s11581-018-2824-8

    Article  CAS  Google Scholar 

  24. Kong SY, Cheng K, Gao YY, Ouyang T, Ye K, Wang GL, Cao DX (2016) A novel three-dimensional manganese dioxide electrode for high performance supercapacitors. J Power Sources 308:141–148. https://doi.org/10.1016/j.jpowsour.2016.01.076

    Article  CAS  Google Scholar 

  25. Xu GR, Wen Y, Min XP, Dong WH, Tang AP, Song HS (2015) Construction of MnO2/3-dimensional porous crack Ni for high-performance supercapacitors. Electrochim Acta 186:133–141. https://doi.org/10.1016/j.electacta.2015.10.136

    Article  CAS  Google Scholar 

  26. Li YM, Pan JJ, Wu JZ, Yi TF, Xie Y (2018) Mesoporous NiCo2O4 nanoneedles@MnO2 nanoparticles grown on nickel foam for electrode used in high-performance supercapacitors. J Energy Chem 31:167–177. https://doi.org/10.1016/j.jechem.2018.06.009

  27. Huang M, Zhang Y, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors. J Power Sources 252:98–106. https://doi.org/10.1016/j.jpowsour.2013.12.030

    Article  CAS  Google Scholar 

  28. Peng L, Peng X, Liu BR, Wu CZ, Xie Y, Yu GH (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 13:2151–2157. https://doi.org/10.1021/nl400600x

    Article  CAS  PubMed  Google Scholar 

  29. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190. https://doi.org/10.1021/cm049649j

    Article  CAS  Google Scholar 

  30. Wang L, Zheng YL, Chen SL, Ye YH, Xu FG, Tan HL, Li Z, Hou HQ, Song YH (2014) Three-dimensional kenaf stem-derived porous carbon/MnO2 for high-performance supercapacitors. Electrochim Acta 135:380–387. https://doi.org/10.1016/j.electacta.2014.05.044

    Article  CAS  Google Scholar 

  31. He YM, Chen WJ, Li XD, Zhang ZX, Fu JC, Zhao CH, Xie EQ (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182. https://doi.org/10.1021/nn304833s

    Article  CAS  PubMed  Google Scholar 

  32. Ashassi-Sorkhabi H, La’le Badakhshan P (2017) Electrochemical synthesis of three-dimensional porous networks of nickel with different micro-nano structures for the fabrication of Ni/MnOx nanocomposites with enhanced supercapacitive performance. Appl Surf Sci 419:165–176. https://doi.org/10.1016/j.apsusc.2017.04.254

    Article  CAS  Google Scholar 

  33. Xiao JW, Yang SX, Wan L, Xiao F, Wang S (2014) Electrodeposition of manganese oxide nanosheets on a continuous three-dimensional nickel porous scaffold for high performance electrochemical capacitors. J Power Sources 245:1027–1034. https://doi.org/10.1016/j.jpowsour.2013.07.024

    Article  CAS  Google Scholar 

  34. Prabhin VS, Jeyasubramanian K, Benitha VS, Veluswamy P, Cho BJ (2020) Fabrication and evaluation of hybrid supercapacitor consisting of nano cobalt oxide and manganese oxide deposited electrochemically on nanoporous Au-electrode. Electrochim Acta 330:135199. https://doi.org/10.1016/j.electacta.2019.135199

    Article  CAS  Google Scholar 

  35. Kazemi SH, Kianic MA, Ghaemmaghami M, Kazemi H (2016) Nano-architectured MnO2 electrodeposited on the Cu-decorated nickel foam substrate as supercapacitor electrode with excellent areal capacitance. Electrochim Acta 197:107–116. https://doi.org/10.1016/j.electacta.2016.03.063

    Article  CAS  Google Scholar 

  36. Huang M, Mi R, Liu H, Li F, Zhao XL, Zhang W, He SX, Zhang YX (2014) Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J Power Sources 269:760–767. https://doi.org/10.1016/j.jpowsour.2014.07.031

    Article  CAS  Google Scholar 

  37. Li YJ, Wang GL, Ye K, Cheng K, Pan Y, Yan P, Yin JL, Cao DX (2014) Facile preparation of three-dimensional multilayer porous MnO2/reduced graphene oxide composite and its supercapacitive performance. J Power Sources 271:582–588. https://doi.org/10.1016/j.jpowsour.2014.08.048

    Article  CAS  Google Scholar 

  38. Li YJ, Cao DX, Wang Y, Yang SN, Zhang DM, Ye K, Cheng K, Yin JL, Wang GL, Xu Y (2015) Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. J Power Sources 279:138–145. https://doi.org/10.1016/j.jpowsour.2014.12.153

    Article  CAS  Google Scholar 

  39. Zhao Z, Shen T, Liu Z, Zhong Q, Qi Y (2020) Facile fabrication of binder-free reduced graphene oxide/MnO2/Ni foam hybrid electrode for high-performance supercapacitors. J Alloys Compd 812:152124. https://doi.org/10.1016/j.jallcom.2019.152124

    Article  CAS  Google Scholar 

  40. Kong SY, Cheng K, Ouyang T, Gao YY, Ke Y, Wang GL, Cao DX (2016) Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors. Electrochim Acta 226:29–39. https://doi.org/10.1016/j.electacta.2016.12.158

    Article  CAS  Google Scholar 

  41. Feng M, Zhang G, Du Q, Su L, Ma Z, Qin X, Shao G (2017) Co3O4@MnO2 core shell arrays on nickel foam with excellent electrochemical performance for aqueous asymmetric supercapacitor. Ionics 23:1637–1643. https://doi.org/10.1007/s11581-017-2013-1

    Article  CAS  Google Scholar 

  42. Huang M, Li F, Zhao XL, Luo D, You XQ, Zhang YX, Li G (2014) Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrodes. Electrochim Acta 152:172–177. https://doi.org/10.1016/j.electacta.2014.11.127

    Article  CAS  Google Scholar 

  43. Zhan D, Cong CJ, Diakite K, Tao YT, Zhang KL (2005) Kinetics of thermal decomposition of nickel oxalate dihydrate in air. Thermochim Acta 430(1–2):101–105. https://doi.org/10.1016/j.tca.2005.01.029

    Article  CAS  Google Scholar 

  44. Małecka B, Małecki A, Drożdż-Cieśla E, Tortet L, Llewellyn P, Rouquerol F (2007) Some aspects of thermal decomposition of NiC2O42H2O. Thermochim Acta 466:57–62. https://doi.org/10.1016/j.tca.2007.10.010

    Article  CAS  Google Scholar 

  45. Wu MS, Huang YA, Yang CH, Jow JJ (2007) Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. Int J Hydrog Energy 32:4153–4159

    Article  CAS  Google Scholar 

  46. Jeyasubramanian K, Raja TSG, Purushothaman S, Kumar MV, Sushmitha I (2017) Supercapacitive performances of MnO2 nanostructures grown on hierarchical Cu nano leaves via electrodeposition. Electrochim Acta 227:401–409. https://doi.org/10.1016/j.electacta.2017.01.044

    Article  CAS  Google Scholar 

  47. Yin JL, Park JY (2014) A nickel foam supported copper core/nickel oxide shell composite for supercapacitor applications. Microporous Mesoporous Mater 200:61–67. https://doi.org/10.1016/j.micromeso.2014.08.016

    Article  CAS  Google Scholar 

  48. Pang SC, Anderson MA, Chapman TW (2000) Novel electrode materials for thin film suparcapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147:444–450. https://doi.org/10.1149/1.1393216

    Article  CAS  Google Scholar 

  49. He SJ, Chen W (2014) High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J Power Sources 262:391–400. https://doi.org/10.1016/j.jpowsour.2014.03.137

    Article  CAS  Google Scholar 

  50. Huang M, Zhao XL, Li F, Zhang LL, Zhang YX (2015) Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 277:36–43. https://doi.org/10.1016/j.jpowsour.2014.12.005

    Article  CAS  Google Scholar 

  51. Shi X, Li Y, Chen R, Ni H, Zhan W, Zhang B, Dong S (2018) Defective carbon nanotube forest grown on stainless steel encapsulated in MnO2 nanosheets for supercapacitors. Electrochim Acta 278:61–71. https://doi.org/10.1016/j.electacta.2018.05.042

    Article  CAS  Google Scholar 

  52. He SJ, Zhang RZ, Zhang CM, Liu MM, Gao XH, Ju J, Li L, Chen W (2015) Al/C/MnO2 sandwich nanowalls with highly porous surface for electrochemical energy storage. J Power Sources 299:408–416. https://doi.org/10.1016/j.jpowsour.2015.09.029

    Article  CAS  Google Scholar 

  53. Xin G, Wang Y, Zhang J, Jia S, Zang J, Wang Y (2015) A self-supporting graphene/MnO2 composite for high-performance supercapacitors. Int J Hydrog Energy 40:10176–10184. https://doi.org/10.1016/j.ijhydene.2015.06.060

    Article  CAS  Google Scholar 

  54. Zhou Y, Ma L, Gan M, Ye M, Li X, Zhai Y, Yan F, Cao F (2018) Monodisperse MnO2@NiCo2O4 core/shell nanospheres with highly opened structures as electrode materials for good-performance supercapacitors. Appl Surf Sci 444:1–9. https://doi.org/10.1016/j.apsusc.2018.03.049

    Article  CAS  Google Scholar 

  55. Argüello JA, Rojo JM, Moreno R (2019) Electrophoretic deposition of manganese oxide and graphene nanoplatelets on graphite paper for the manufacture of supercapacitor electrodes. Electrochim Acta 294:102–109. https://doi.org/10.1016/j.electacta.2018.10.091

    Article  CAS  Google Scholar 

  56. Wang H, Yan G, Cao X, Liu Y, Zhong Y, Cui L, Liu J (2020) Hierarchical Cu(OH)2@MnO2 core-shell nanorods array in situ generated on three-dimensional copper foam for high-performance supercapacitors. J Colloid Interface Sci 563:394–404. https://doi.org/10.1016/j.jcis.2019.12.095

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the financial support of the Science & Technology Planning Project of the Hunan Provincial Science & Technology Department (No.2012 GK3098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-rong Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2963 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Yx., Zhan, Zw., Tao, L. et al. Construction of MnO2/micro-nano Ni-filled Ni foam for high-performance supercapacitors application. Ionics 26, 4671–4684 (2020). https://doi.org/10.1007/s11581-020-03616-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03616-3

Keywords

Navigation