Skip to main content
Log in

The role of CTNNB1 and LEF1 in feather follicles development of Anser cygnoides and Anser anser

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Wingless-types/beta-catenin (Wnt/β-catenin) signaling pathway is one of the most extensively studied transcriptional cascades involved in various types of organogenesis including embryonic and postnatal development. Downy feather quantity is primarily affected by follicular development and gene regulations.

Objective

This research was aimed to investigate the role of catenin beta-1(CTNNB1) and lymphoid enhancerbinding factor-1 (LEF1) on feather follicles development at different developmental stages.

Methods

Fluorescence quantitative PCR, Western-blot and immunohistochemical methods were used in Anser cygnoides and Anser anser embryos (E12, E13 E18, and E28) and after birth gosling stages (G18, G48, G88) for gene expression analysis.

Results

CTNNB1 and LEF1 genes were expressed in Anser cygnoides and Anser anser at different embryonic and after-birth gosling developmental stages and the expression levels were significantly different in different stages (p < 0.05). The mRNA expression of CTNNB1 and LEF1 genes reached the highest level at D88 in Anser cygnoides, while the highest expression levels were at D18 and D88 in Anser anser, and the expression levels of CTNNB1 genes at D88 in all embryonic stages were significantly lower than after-birth stages. CTNNB1 and LEF1 protein expression were the highest at E12 and E28 for Anser cygnoides feather follicles development. While at a similar stage for Anser anser, the expression of CTNNB1 and LEF1 protein was the highest at D48 and D18. Protein expression at embryonic stages was in the epidermis (E) and the hair basal plate (P), the expression site for after-birth stages was in the dermal papilla (DP).

Conclusion

Our study illustrated that CTNNB1 and LEF1 has an impact on Anser cygnoides and Anser anser feather follicles growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amberg N, Sotiropoulou PA, Heller G, Lichtenberger BM, Holcmann M (2019) EGFR controls hair shaft differentiation in a p53-independent manner. iScience 15:243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2(5):643–653

    Article  CAS  PubMed  Google Scholar 

  • Asally M, Yoneda Y (2005) CTNNB1 can act as a nuclear import receptor for its partner transcription factor, lymphocyte enhancer factor-1 (lef-1). Exp Cell Res 308(2):357–363

    Article  CAS  PubMed  Google Scholar 

  • Beate M, Lichtenberger MM, Watt FM (2016) Epidermal b-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages. Nat Commun 7:10537

    Article  CAS  Google Scholar 

  • Boz MA, Oz F, Yamak US, Sarica M, Cilavdaroglu E (2019) The carcass traits, carcass nutrient composition, amino acid, fatty acid, and cholesterol contents of local Turkish goose varieties reared in an extensive production system. Poult Sci 98(7):3067–3080

    Article  CAS  PubMed  Google Scholar 

  • Celso CL, Prowse DM, Watt FM (2004) Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131(8):1787–1799

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Jarrell A, Guo C, Lang R, Atit R (2012) Dermal β-catenin activity in response to epidermal Wnt ligands is required for fibroblast prolife ration and hair follicle initiation. Development 139(8):1522–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driskell RR, Goodheart M, Neff T, Liu X, Luo M (2007) Wnt3a regulates Lef-1 expression during airway submucosal gland morphogenesis. Dev Biol 305(1):90–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu J, Hsu W (2013) Epidermal Wnt controls hair follicle induction byorchestrating dynamic signaling crosstalk between the epidermisand dermis. J Invest Dermatol 133(4):890–898

    Article  CAS  PubMed  Google Scholar 

  • Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated CTNNB1 in skin. J Cell 95(5):605–614

    Article  CAS  Google Scholar 

  • Grigoryan T, Wend P, Klaus A, Birchmeier W (2008) Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 22(17):2308–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golestaneh N, Beauchamp E, Fallen S, Kokkinaki M, Uren A (2009) Wnt signaling promotes proliferation and stemness regulation of spermatogonial stem/progenitor cells. Reproduction 138(1):151–162

    Article  CAS  PubMed  Google Scholar 

  • IDFL (2010) Top 10 reasons to test for fill power. IDFL News (2):1. https://www.idfl.com/media/pdfs/news/IDFL%20Newsletter%20-%202010-2.pdf. Accessed 20 Nov 2019

  • Inui S, Fukuzato Y, Nakajima T, Yoshikawa K, Itami S (2002) Androgen-inducible TGF-beta1 from balding dermal papilla cells inhibits epithelial cell growth: a clue to understand paradoxical effects of androgen on human hair growth. FASEB J 16(14):196–1969

    Article  CAS  Google Scholar 

  • Kikuchi A (2003) Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 94(3):225–229

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto J, Burgeson RE, Morgan BA (2000) Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 14(10):1181–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozák J, Gara I, Kawada T (2010) Production and welfare aspects of goose down and feather harvesting. Worlds Poult Sci 66:767–778

    Article  Google Scholar 

  • Kuwahara A, Sakai H, Xu Y, Itoh Y, Hirabayashi Y (2014) Tcf3 represses Wnt-β-catenin signaling and maintains neural stem cell population during neocortical development. PLoS ONE 9(5):e94408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwack MH, Kang BM, Kim MK, Kim JC, Sung YK (2011) Minoxidil activates β-catenin pathway in human dermal papilla cells: a possible explanation for its anagen prolongation effect. J Dermatol Sci 62(3):154–159

    Article  CAS  PubMed  Google Scholar 

  • Lin CM, Liu Y, Huang K, Chen XC, Cai BZ (2014) Long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation. Biochem Biophys Res Commun 453(3):508–514

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Driskell RR, Luo M, Abbott D, Filali M (2004) Characterization of Lef-1 promoter segments thatfacilitate inductive developmental expression in skin. J Invest Dermatol 123(2):264–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Sello CT, Sun Y, Zhou Y, Lu H (2018) De novo transcriptome sequencing analysis of Goose (Anser anser) embryonic skin and the identification of genes related to feather follicle morphogenesis at three stages of development. Int J Mol Sci 19(10):3170

    Article  PubMed Central  CAS  Google Scholar 

  • Michon F, Forest L, Collomb E, Demongeot J, Dhouailly D (2008) BMP2 and BMP7 play antagonistic roles in feather induction. Development 135(16):2797–2805

    Article  CAS  PubMed  Google Scholar 

  • Millar SE (2002) Molecular mechanisms regulating hair follicle development. J Invest Dermatol 118(2):216–225

    Article  CAS  PubMed  Google Scholar 

  • Müller-Röver S, Handjiski B, Van der Veen C, Eichmüller S (2001) Comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117(1):3–15

    Article  PubMed  Google Scholar 

  • Niemann C, Owens DM, Hülsken J, Birchmeier W, Watt FM (2002) Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 129(1):95–109

    CAS  PubMed  Google Scholar 

  • Nishimura EK (2011) Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res 24(3):401–410

    Article  CAS  PubMed  Google Scholar 

  • Pingel H, Germany L (2011) Waterfowl production for food security. Lohmann Inf 46(2):32–42

    Google Scholar 

  • Rippa A, Terskikh V, Nesterova A, Vasiliev A, Vorotelyak E (2015) Hair follicle morphogenesis and epidermal homeostasis in we/we wal/wal mice with postnatal alopecia. Histochem Cell Biol 143(5):481–496

    Article  CAS  PubMed  Google Scholar 

  • Santiago L, Daniels G, Wang D, Deng FM, Lee P (2017) Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment. Am J Cancer Res 7(6):1389–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sennett R, Rendl M (2012) Mesenchymal–epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol 23(8):917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuisheng H (2018) Present situation, future development trend and suggestions of waterfowl industry in China. J Anim Husbandry 55(03):124–128

    Google Scholar 

  • Sun Y (2014) Studies on Morphogenesis and growth cycle of goose hair follicle and expression of WNT10b in goose hair follicle. Jilin Agricultural University.

  • Wang B (2019) Current situation and prospect of goose industry. Poult Sci 09:39–40

    Google Scholar 

  • Wang X, Tredget EE, Wu Y (2012) Dynamic signals for hair follicle development and regeneration. Stem Cells Dev 21(1):7–18

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Xu RF, Guo X (2008) Characterization of embryonic feather follicle development in the Chinese indigenous Anser cygnoides. Asian Austral J Anim 21:346–352

    Article  Google Scholar 

  • Xing Y, Ma X, Guo H, Deng F, Yang J (2016) Wnt5a suppresses β-catenin signaling during hair follicle regeneration. Int J Med Sci 13(8):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing F, Yi WJ, Miao F, Su MY, Lei TC (2018) Baicalin increases hair follicle development by increasing canonical Wnt/β-catenin signaling and activating dermal papillar cells in mice. Int J Mol Med 41(4):2079–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yu J, Shi C, Huang Y, Wang Y (2013) Lef1 contributes to the differentiation of bulge stem cells by nuclear translocation and cross-talk with the Notch signaling pathway. Int J Med Sci 10(6):738–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Nan W, Wang S, Zhang T, Si H (2016) Epidermal growth factor promotes proliferation and migration of follicular outer root sheath cells via Wnt/β-catenin signaling. Cell Physiol Biochem 39(1):360–370

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Lei M, Xin H, Hu C, Yang T (2017) Wnt/β-catenin signaling promotes aging-associated hair graying in mice. Oncotarget 8(41):69316–69327

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou P, Byrne C, Jacobs J, Fuchs E (1995) Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev 9(6):700–713

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Wang H, Jing J, Yu L, Wu X (2018) Regulation of hair follicle development by exosomes derived from dermal papilla cells. Biochem Biophys Res Commun 500(2):325–332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors appreciate the Jilin Agricultural University Geese Farm for daily management to raise geese including the incubation system operations.

Funding

This research was funded by the science and technology talent project in special fund for science and technology innovation of Jilin provincial science and technology department (2020), the Jilin native high-quality poultry breeds reproduction and extension (201904), and the Jilin Province Science and Technology Development Project (20180201034NY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhou, Y., Msuthwana, P. et al. The role of CTNNB1 and LEF1 in feather follicles development of Anser cygnoides and Anser anser. Genes Genom 42, 761–771 (2020). https://doi.org/10.1007/s13258-020-00950-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-00950-8

Keywords

Navigation