Skip to main content

Advertisement

Log in

Characterization of ultrasonic-treated corn crop biomass using imaging, spectral and thermal techniques: a review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The corn crop biomass (CB) is widely used as a feedstock for biochemicals such as lactic acid, succinic acid, citric acid, xanthan gum, and biofuels likely bioethanol, butanol, and biogas. Since CB provides a resistive structure for enzymatic and microbial attack, ultrasonic treatment can assist to break the recalcitrance structure. Several techniques such as imaging (atomic force microscopy—AFM; scanning electron microscopy—SEM), spectroscopy (energy-dispersive X-ray spectroscopy—EDX; Fourier transform infrared spectroscopy—FTIR; Raman spectroscopy; X-ray diffraction—XRD), and thermal (TGA) were studied to characterize the ultrasonicated CB. A detailed analysis of different techniques on their potential benefits will assist the researchers to select a suitable technique to optimize the ultrasonication for various applications. The basic mechanisms behind ultrasonication, benefits, downsides, practical considerations, and factors that should be deliberated in the future studies are discussed. Sonication enhanced the hemicellulose and cellulose yield, saccharification rate, and delignification of CB. AFM, EDX, FTIR, Raman spectroscopy, SEM, TGA, and XRD described the variations in topographical features, elemental composition, molecular structure, microstructure, thermal steadiness, and degree of crystallinity, respectively, of the ultrasonicated CB. The quantitative crystallinity of CB can be analyzed through XRD and Raman spectroscopy, whereas the qualitative crystallinity and molecular structural comparisons are studied using FTIR. Imaging techniques can provide important aspects such as lignin relocalization and cell wall delamination. Integrating EDX with SEM is beneficial to determine the elemental percentage composition altered in CB due to ultrasonication.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFM:

atomic force microscopy

CB:

corn biomass

CC:

corn cob

CCSAA:

corn cob soaked in aqueous ammonia

CCUSAA:

corn cob pretreated by ultrasound-assisted soaking in aqueous ammonia

CGM:

corn gluten meal

CHFs:

corn husk fibers

CrI:

degree of crystallinity

CS:

corn stover

CSFs:

corn straw fibers

DDGS:

dried distiller’s grains with solubles

DSA:

dilute sulfuric acid

EDX:

energy-dispersive X-ray spectroscopy

FTIR:

Fourier transform infrared spectroscopy

RMS:

root mean square

SEM:

scanning electron microscopy

SP:

sodium percarbonate

TGA:

thermogravimetric analysis

USP:

ultrasonic processing

UVA:

ultrasonic vibration-assisted

XRD:

X-ray diffraction

References

  1. Bessou C, Ferchaud F, Gabrielle B et al (2011) Biofuels, greenhouse gases and climate change. A review. Sustain Agric 2:365–468

    Google Scholar 

  2. Nakashima K, Ebi Y, Kubo M et al (2016) Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover. Ultrason Sonochem 29:455–460. https://doi.org/10.1016/j.ultsonch.2015.10.017

    Article  Google Scholar 

  3. Gáspár M, Juhász T, Szengyel Z, Réczey K (2005) Fractionation and utilisation of corn fibre carbohydrates. Process Biochem 40:1183–1188. https://doi.org/10.1016/j.procbio.2004.04.004

    Article  Google Scholar 

  4. Garrote G, Domínguez H, Parajó JC (2002) Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. J Food Eng 52:211–218. https://doi.org/10.1016/S0260-8774(01)00108-X

    Article  Google Scholar 

  5. Sari NH, Wardana ING, Irawan YS, Siswanto E (2017) The effect of sodium hydroxide on chemical and mechanical properties of corn husk fiber. Orient J Chem 33:3037–3042. https://doi.org/10.13005/ojc/330642

    Article  Google Scholar 

  6. Shukla R, Cheryan M (2001) Zein: The industrial protein from corn. Ind Crop Prod 13:171–192. https://doi.org/10.1016/S0926-6690(00)00064-9

    Article  Google Scholar 

  7. Rose DJ, Inglett GE, Liu SX (2010) Utilisation of corn (Zea mays) bran and corn fiber in the production of food components. J Sci Food Agric 90:915–924. https://doi.org/10.1002/jsfa.3915

    Article  Google Scholar 

  8. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550. https://doi.org/10.1016/j.pecs.2012.02.002

    Article  Google Scholar 

  9. Subhedar PB, Gogate PR (2013) Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: a review. Ind Eng Chem Res 52:11816–11828. https://doi.org/10.1021/ie401286z

    Article  Google Scholar 

  10. Wang P, Liu C, Chang J et al (2019) Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw. Renew Energy 138:502–508. https://doi.org/10.1016/j.renene.2019.01.118

    Article  Google Scholar 

  11. Karimi K (2014) Current and future ABE processes. Biofuel Res J 4:77

  12. Salehian P, Karimi K, Zilouei H, Jeihanipour A (2013) Improvement of biogas production from pine wood by alkali pretreatment. Fuel 106:484–489. https://doi.org/10.1016/j.fuel.2012.12.092

  13. Karimi K, Shafiei M, Kumar R (2013) Progress in physical and chemical pretreatment of lignocellulosic biomass. In: Gupta, VK, Tuohy, M G (Eds.), Biofuel Technologies. Springer, Berlin, Heidelberg, pp. 53–96.

  14. Kumar R, Wyman CE (2013) Physical and chemical features of pretreated biomass that influence macro-/micro-accessibility and biological processing. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 1st edn. Wiley, New York, pp 281–310

    Chapter  Google Scholar 

  15. Tobergte DR, Curtis S (2013) Ultrasound technologies for food bioprocessing. Springer, New York

    Google Scholar 

  16. Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52:3563–3580. https://doi.org/10.1021/ie3022785

  17. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  18. Kunaver M, Jasiukaityte E, Čuk N (2012) Ultrasonically assisted liquefaction of lignocellulosic materials. Bioresour Technol 103:360–366. https://doi.org/10.1016/j.biortech.2011.09.051

    Article  Google Scholar 

  19. Huezo L, Shah A, Michel FC (2019) Effects of ultrasound on fermentation of glucose to ethanol by saccharomyces cerevisiae. Fermentation 5:1–14. https://doi.org/10.3390/fermentation5010016

    Article  Google Scholar 

  20. Gogate PR, Sutkar VS, Pandit AB (2011) Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 166:1066–1082. https://doi.org/10.1016/j.cej.2010.11.069

    Article  Google Scholar 

  21. Nitayavardhana S, Shrestha P, Rasmussen ML et al (2010) Ultrasound improved ethanol fermentation from cassava chips in cassava-based ethanol plants. Bioresour Technol 101:2741–2747. https://doi.org/10.1016/j.biortech.2009.10.075

    Article  Google Scholar 

  22. Ebringerová A, Hromádková Z (2002) Effect of ultrasound on the extractibility of corn bran hemicelluloses. Ultrason Sonochem 9:225–229. https://doi.org/10.1016/S1350-4177(01)00124-9

    Article  Google Scholar 

  23. Zhang YQ, Fu E, Liang J (2008) Effect of ultrasonic waves on the saccharification processes of lignocellulose. Chem Eng Technol 31:1510–1515. https://doi.org/10.1002/ceat.200700407

    Article  Google Scholar 

  24. Jin J, Ma H, Wang K et al (2015) Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal. Ultrason Sonochem 24:55–64. https://doi.org/10.1016/j.ultsonch.2014.12.013

    Article  Google Scholar 

  25. Du R, Su R, Qi W, He Z (2018) Enhanced enzymatic hydrolysis of corncob by ultrasound-assisted soaking in aqueous ammonia pretreatment. 3. Biotech 8:166. https://doi.org/10.1007/s13205-018-1186-2

    Article  Google Scholar 

  26. Montalbo-Lomboy M, Khanal SK, van Leeuwen J et al (2010) Ultrasonic pretreatment of corn slurry for saccharification: a comparison of batch and continuous systems. Ultrason Sonochem 17:939–946. https://doi.org/10.1016/j.ultsonch.2010.01.013

    Article  Google Scholar 

  27. Dong C, Chen J (2019) Optimization of process parameters for anaerobic fermentation of corn stalk based on least squares support vector machine. Bioresour Technol 271:174–181. https://doi.org/10.1016/j.biortech.2018.09.085

    Article  Google Scholar 

  28. Nikolić S, Mojović L, Rakin M et al (2010) Ultrasound-assisted production of bioethanol by simultaneous saccharification and fermentation of corn meal. Food Chem 122:216–222. https://doi.org/10.1016/j.foodchem.2010.02.063

    Article  Google Scholar 

  29. Yachmenev V, Condon B, Klasson T, Lambert A (2009) Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J Biobased Mater Bioenergy 3:25–31. https://doi.org/10.1166/jbmb.2009.1002

    Article  Google Scholar 

  30. Hroma Z, Ebringerova A (1999) Study of the classical and ultrasound-assisted extraction of the corn cob xylan. Ind Crop Prod 9:101–109

    Article  Google Scholar 

  31. Khanal SK, Montalbo M, Van Leeuwen JH et al (2007) Ultrasound enhanced glucose release from corn in ethanol plants. Biotechnol Bioeng 98:978–985. https://doi.org/10.1002/bit

    Article  Google Scholar 

  32. Montalbo-lomboy M, Johnson L, Kumar S et al (2010) Sonication of sugary-2 corn: a potential pretreatment to enhance sugar release sugar release. Bioresour Technol 101:351–358. https://doi.org/10.1016/j.biortech.2009.07.075

    Article  Google Scholar 

  33. Xu QQ, Zhao MJ, Yu ZZ et al (2017) Enhancing enzymatic hydrolysis of corn cob, corn stover and sorghum stalk by dilute aqueous ammonia combined with ultrasonic pretreatment. Ind Crop Prod 109:220–226. https://doi.org/10.1016/j.indcrop.2017.08.038

    Article  Google Scholar 

  34. Yin J, Hao L, Yu W et al (2014) Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment. Chin J Catal 35:763–769. https://doi.org/10.1016/s1872-2067(14)60040-1

    Article  Google Scholar 

  35. Pérez-Rodríguez N, García-Bernet D, Domínguez JM (2016) Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production. Bioresour Technol 221:130–138. https://doi.org/10.1016/j.biortech.2016.09.013

    Article  Google Scholar 

  36. García A, Alriols MG, Llano-Ponte R, Labidi J (2011) Ultrasound-assisted fractionation of the lignocellulosic material. Bioresour Technol 102:6326–6330. https://doi.org/10.1016/j.biortech.2011.02.045

    Article  Google Scholar 

  37. Donohoe BS, Vinzant TB, Elander RT et al (2011) Surface and ultrastructural characterization of raw and pretreated switchgrass. Bioresour Technol 102:11097–11104. https://doi.org/10.1016/j.biortech.2011.03.092

    Article  Google Scholar 

  38. Yarbrough JM, Himmel ME, Ding SY (2009) Plant cell wall characterization using scanning probe microscopy techniques. Biotechnol Biofuels 2:1–11. https://doi.org/10.1186/1754-6834-2-17

    Article  Google Scholar 

  39. Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose & microcrystalline cellulose I structures studies by XRD (WAXD): comparison between measurement techniques. Lenzinger Berichte 89:118–131

    Google Scholar 

  40. Banerjee S, Yang R, Courchene CE, Conners TE (2009) Scanning electron microscopy measurements of the surface roughness of paper. Ind Eng Chem Res 48:4322–4325. https://doi.org/10.1021/ie900029v

    Article  Google Scholar 

  41. Ciesielski A, Samorì P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398. https://doi.org/10.1039/c3cs60217f

    Article  Google Scholar 

  42. Ostovareh S, Karimi K, Zamani A (2015) Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Ind Crop Prod 66:170–177. https://doi.org/10.1016/j.indcrop.2014.12.023

  43. Zhang Q, Zhang P, Pei Z, Wang D (2017) Investigation on characteristics of corn stover and sorghum stalk processed by ultrasonic vibration-assisted pelleting. Renew Energy 101:1075–1086. https://doi.org/10.1016/j.renene.2016.09.071

    Article  Google Scholar 

  44. Maepa CE, Jayaramudu J, Okonkwo JO et al (2015) Extraction and characterization of natural cellulose fibers from maize tassel. Int J Polym Anal Charact 20:99–109. https://doi.org/10.1080/1023666X.2014.961118

    Article  Google Scholar 

  45. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. Fourier Transform - Materials Analysis 3:45–68. https://doi.org/10.5772/35482

    Article  Google Scholar 

  46. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  47. Ju X, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481. https://doi.org/10.1016/j.carbpol.2014.12.071

    Article  Google Scholar 

  48. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y

    Article  Google Scholar 

  49. Krishnaiah P, Ratnam CT, Manickam S (2017) Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments. Ultrason Sonochem 34:729–742. https://doi.org/10.1016/j.ultsonch.2016.07.008

    Article  Google Scholar 

  50. Karp EM, Resch MG, Donohoe BS et al (2015) Alkaline pretreatment of switchgrass. ACS Sustain Chem Eng 3:1479–1491. https://doi.org/10.1021/acssuschemeng.5b00201

    Article  Google Scholar 

  51. Mouille G, Robin S, Lecomte M et al (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-transform infrared (FT-IR) microspectroscopy. Plant J 35:393–404. https://doi.org/10.1046/j.1365-313X.2003.01807.x

    Article  Google Scholar 

  52. Zhou C, Hu J, Yu X et al (2017) Heat and/or ultrasound pretreatments motivated enzymolysis of corn gluten meal: hydrolysis kinetics and protein structure. LWT Food Sci Technol 77:488–496. https://doi.org/10.1016/j.lwt.2016.06.048

    Article  Google Scholar 

  53. Tian S, Wang Z, Fan Z, Zuo L (2012) Comparison of ultrasonic and CO2 laser pretreatment methods on enzyme digestibility of corn stover. Int J Mol Sci 13:4141–4152. https://doi.org/10.3390/ijms13044141

    Article  Google Scholar 

  54. Ebringerová A, Hromádková Z (1997) The effect of ultrasound on the structure and properties of the water-soluble corn hull heteroxylan. Ultrason Sonochem 4(4):305–309. https://doi.org/10.1016/S1350-4177(97)00037-0

    Article  Google Scholar 

  55. Qu W, Liu J, Xue Y et al (2018) Potential of producing carbon fiber from biorefinery corn stover lignin with high ash content. J Appl Polym Sci 135:1–11. https://doi.org/10.1002/app.45736

  56. Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733. https://doi.org/10.1007/s10570-010-9420-z

    Article  Google Scholar 

  57. Jin J, Ma H, Wang B, Yagoub AEGA, Wang K, He R, Zhou C (2016) Effects and mechanism of dual-frequency power ultrasound on the molecular weight distribution of corn gluten meal hydrolysates. Ultrason Sonochem 30:44–51. https://doi.org/10.1016/j.ultsonch.2015.11.021

  58. Kambli ND, Samanta KK, Basak S et al (2018) Characterization of the corn husk fibre and improvement in its thermal stability by banana pseudostem sap. Cellulose 25:5241–5257. https://doi.org/10.1007/s10570-018-1931-z

    Article  Google Scholar 

  59. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, NREL/TP-510-42618.

  60. Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose–structure and characterization. Cellul Chem Technol 45:13–21

    Google Scholar 

  61. Zhang M, Chen G, Kumar R, Xu B (2013) Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging. Biotechnol Biofuels 6:1–11. https://doi.org/10.1186/1754-6834-6-147

    Article  Google Scholar 

  62. Isogai A, Atalla AH (1991) Amorphous celluloses stable in aqueous media. Regeneration from SO2-amine solvent systems. J Polym Sci Part A: Polym. Chem 29:113–119. https://doi.org/10.1002/pola.1991.080290113

    Article  Google Scholar 

  63. Zang D, Zhang M, Liu F, Wang C (2016) Superhydrophobic/superoleophilic corn straw fibers as effective oil sorbents for the recovery of spilled oil. J Chem Technol Biotechnol 91:2449–2456. https://doi.org/10.1002/jctb.4834

    Article  Google Scholar 

  64. Li J, Qiang D, Zhang M et al (2015) Joint action of ultrasonic and Fe3+ to improve selectivity of acid hydrolysis for microcrystalline cellulose. Carbohydr Polym 129:44–49. https://doi.org/10.1016/j.carbpol.2015.04.034

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by BioFuelNet Canada; Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph Ontario, IGPC Ethanol Inc., Aylmer, Ontario, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamalai Manickavasagan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Pradhan, R., Manickavasagan, A. et al. Characterization of ultrasonic-treated corn crop biomass using imaging, spectral and thermal techniques: a review. Biomass Conv. Bioref. 12, 1393–1408 (2022). https://doi.org/10.1007/s13399-020-00748-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00748-4

Keywords

Navigation