Skip to main content
Log in

Catalytic Pyrolysis Vapor Upgrading of Corncob into Furans over Pyrolysis-Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometry: Significance of Catalyst and Temperature

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Analytical pyrolysis-comprehensive two-dimensional gas chromatography/mass spectrometry (Py-GC×GC/MS) was employed for the on-line analysis of catalytic pyrolysis products distribution and furans selectivity of corncob. Different catalysts (TiO2, ZrO2, MCM-41 and activated carbon (AC)) and catalytic temperature (350 °C, 400 °C, 450 °C and 500 °C) were investigated. The catalysts were subjected to several characterization methods, including temperature programmed decomposition of ammonia (NH3-TPD) and N2 adsorption-desorption, to investigate the effects of physical-chemical properties of the catalysts on products distribution and furans selectivity. The experiment results showed that a lower catalytic temperature (≤ 400 °C) was conductive to form furans and higher catalytic temperature (≥ 450 °C) was promoted hydrocarbons formation, among the four catalysts. The AC catalyst gave higher furans relative peak area (54.48%) than other catalysts (31.24% ~ 41.99%). And higher total acidity (weak acidity) of AC was favored for the formation of furfural and furan, 2-methyl- at 350 °C. Moreover, AC had the great thermal stability, and the catalyst recycling tests showed that the prepared AC can be reused for five times in furan-rich bio-oil production. After cycle, the relative peak area of furans also maintained above 40%. In addition, furan, 2-methyl- always maintained a high relative peak area (8%). It was expected that four type catalysts can be widely used for biomass catalytic conversion to produce furans processes at low catalytic temperature, especially the AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu L, Dai X, Li N, Tang X, Jiang Y (2019) Highly selective hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over an acid-base bifunctional hafnium-based coordination polymer catalyst. Sustain Energ Fuels 32:995–2999. https://doi.org/10.1039/C8SE00545A

    Article  Google Scholar 

  2. Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623. https://doi.org/10.1039/c3cs60414d

    Article  CAS  Google Scholar 

  3. Zheng Y, Wang F, Yang X, Huang Y, Liu C, Zheng Z, Gu J (2017) Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. J Anal Appl Pyrolysis 126:169–179. https://doi.org/10.1016/j.jaap.2017.06.011

    Article  CAS  Google Scholar 

  4. Dabros TMH, Stummann MZ, Martin H, Jensen PA, Grunwaldt JD, Gabrielsen J, Mortensen PM, Jensen A (2018) Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Prog Energ Combust 68:268–309. https://doi.org/10.1016/j.pecs.2018.05.002

    Article  Google Scholar 

  5. Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides. Green Chem 9:342–350. https://doi.org/10.1039/B611568C

    Article  CAS  Google Scholar 

  6. Hu L, Lin L, Liu S (2014) Chemoselective hydrogenation of biomass-derived 5-hydroxymethylfurfural into the liquid biofuel 2, 5-dimethylfuran. Ind Eng Chem Res 53:9969–9978. https://doi.org/10.1021/ie5013807

    Article  CAS  Google Scholar 

  7. Yan K, Wu G, Lafleur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sust Energ Rev 38:663–676. https://doi.org/10.1016/j.rser.2014.07.003

    Article  CAS  Google Scholar 

  8. Agirrezabal-Telleria I, Gandarias I, Arias PL (2014) Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) renewable carbohydrates: a review. Catal Today 234:42–58. https://doi.org/10.1016/j.cattod.2013.11.027

    Article  CAS  Google Scholar 

  9. Avci A, Saha BC, Kennedy GJ, Cotta MA (2013) High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production. Ind Crop Prod 50:478–484. https://doi.org/10.1016/j.indcrop.2013.07.055

    Article  CAS  Google Scholar 

  10. Seemala B, Haritos V, Tanksale A (2016) Levulinic acid as a catalyst for the production of 5-hydroxymethylfurfural and furfural from lignocellulose biomass. ChemCatChem 8:640–647. https://doi.org/10.1002/cctc.201501105

    Article  CAS  Google Scholar 

  11. Zhang L, Yu H, Wang P, Dong H, Peng X (2013) Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid. Bioresour Technol 130:110–116. https://doi.org/10.1016/j.biortech.2012.12.018

    Article  CAS  Google Scholar 

  12. Guenic SL, Delbecq F, Ceballos C, Len C (2015) Microwave-assisted dehydration of D-xylose into furfural by diluted inexpensive inorganic salts solution in a biphasic system. J Mol Catal A-Chem 410:1–7. https://doi.org/10.1016/j.molcata.2015.08.019

    Article  CAS  Google Scholar 

  13. Enslow KR, Bell AT (2015) The role of metal halides in enhancing the dehydration of xylose to furfural. ChemCatChem 7:479–489. https://doi.org/10.1002/cctc.201402842

    Article  CAS  Google Scholar 

  14. Peleteiro S, Rivas S, Alonso JL, Santos V, Juan CP (2016) Furfural production using ionic liquids: a review. Bioresour Technol 202:181–191. https://doi.org/10.1016/j.biortech.2015.12.017

    Article  CAS  Google Scholar 

  15. Liu B, Zhang Z (2015) Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts. ACS Catal 6:326–338. https://doi.org/10.1021/acscatal.5b02094

    Article  CAS  Google Scholar 

  16. Park HJ, Park KH, Jeon JK, Kim J, Ryoo R, Jeong KE, Park SH, Park YK (2012) Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel 97:379–384. https://doi.org/10.1016/j.fuel.2012.01.075

    Article  CAS  Google Scholar 

  17. Wang K, Kim KH, Brown RC (2014) Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem 16:727–735. https://doi.org/10.1039/C3GC41288A

    Article  CAS  Google Scholar 

  18. Rubgsi AN, Luengnaruemitchai A, Wongkasemjit S, Chollacoop N, Chen SY, Yoshimura Y (2018) Influence of silica sources on structural property and activity of Pd-supported on mesoporous MCM-41 synthesized with an aid of microwave heating for partial hydrogenation of soybean methyl esters. Appl Catal A-Gen 563:80–90. https://doi.org/10.1016/j.apcata.2018.06.028

    Article  CAS  Google Scholar 

  19. Yao W, Makowski P, Giordano C, Goettmann F (2009) Synthesis of early-transition-metal carbide and nitride nanoparticles through the urea route and their use as alkylation catalysts. Chem-Eur J 15:11999–12004. https://doi.org/10.1002/chem.200901496

    Article  CAS  Google Scholar 

  20. Alam MI, De S, Singh B, Saha B, Abu-omar MM (2014) Titanium hydrogenphosphate: an efficient dual acidic catalyst for 5-hydroxymethylfurfural (HMF) production. Appl Catal A-Gen 486:42–44. https://doi.org/10.1016/j.apcata.2014.08.019

    Article  CAS  Google Scholar 

  21. Qi X, Watanabe M, Aida TM, Smith RL (2008) Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal Commun 9:2244–2249. https://doi.org/10.1016/j.catcom.2008.04.025

    Article  CAS  Google Scholar 

  22. Joshi S, Zodge A, Pandare KV, Kulkarni B (2014) Efficient conversion of cellulose to levulinic acid by hydrothermal treatment using airconium dioxide as a recyclable solid acid catalyst. Ind Eng Chem Res 53:18796–18805. https://doi.org/10.1021/ie5011838

    Article  CAS  Google Scholar 

  23. King DL, Zhang L, Xia G, Karim AM, Heldebrant DJ, Wang X, Peterson T, Wang Y (2010) Aqueous phase reforming of glycerol for hydrogen production over Pt-Re supported on carbon. Appl Catal B-Environ 99:206–213. https://doi.org/10.1016/j.apcatb.2010.06.021

    Article  CAS  Google Scholar 

  24. Sobeih KL, Baron M, Gonzalez RJ Recent trends and developments in pyrolysis-gas chromatography. J Chromatogr A 1186:51–66. https://doi.org/10.1016/j.chroma.2007.10.017

  25. Tsuge S, Ohtani H (1997) Structural characterization of polymeric materials by pyrolysis-GC/MS. Polym Degrad Stab 58:109–130. https://doi.org/10.1016/S0141-3910(97)00031-1

  26. Fabbri D, Adamiano A, Falini G, Marco RD, Mancini I (2012) Analytical pyrolysis of dipeptides containing proline and amino acids with polar side chains. Novel 2,5-diketopiperazine markers in the pyrolysates of proteins. J Anal Appl Pyrolysis 95:145–155. https://doi.org/10.1016/j.jaap.2012.02.001

    Article  CAS  Google Scholar 

  27. Cersoy S, Daheur G, Zazzo A, Zirah S, Sablier M (2018) Pyrolysis comprehensive gas chromatography and mass spectrometry: a new tool to assess the purity of ancient collagen prior to radiocarbon dating. Anal Chim Acta 1041:131–145. https://doi.org/10.1016/j.aca.2018.07.048

    Article  CAS  Google Scholar 

  28. Mondello L, Tranchida PQ, Dugo P, Dugo G (2008) Comprehensive two-dimensional gas chromatography-mass spectrometry: a review. Mass Spectrom Rev 27:101–124. https://doi.org/10.1002/mas.20158

    Article  CAS  Google Scholar 

  29. Lin X, Zhang Z, Tan S, Wang F, Song Y, Charles UPJ (2017) In line wood plastic composite pyrolyses and HZSM-5 conversion of the pyrolysis vapors. Energ Convers Manage 141:206–215. https://doi.org/10.1016/j.enconman.2016.07.071

    Article  CAS  Google Scholar 

  30. Leng S, Wang X, Cai Q, Ma F, Liu Y, Wang J (2012) Selective production of chemicals from biomass pyrolysis over metal chlorides supported on zeolite. Bioresource Techno 149:341–345. https://doi.org/10.1016/j.biortech.2013.09.096

    Article  CAS  Google Scholar 

  31. Bai X, Li J, Jia C, Shao J, Yang Q, Chen Y, Yang H, Wang X, Chen H (2019) Preparation of furfural by catalytic pyrolysis of cellulose based on nano Na/Fe-solid acid. Fuel 258:1–8. https://doi.org/10.1016/j.fuel.2019.116089

    Article  CAS  Google Scholar 

  32. Shafaghat H, Lee HW, Tsang YF, Oh D, Jae J, Jung SC, Ko CH, Lam SS, Park YW (2019) In-situ and ex-situ catalytic pyrolysis/co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts. Chem Eng J 366:330–338. https://doi.org/10.1016/j.cej.2019.02.055

    Article  CAS  Google Scholar 

  33. Xu C, Chen Y, Chen Z, Zhu D, Yang H, Liu P, Li T, Chen H (2018) Catalytic fast pyrolysis of cellulose to produce furan compounds with SAPO type catalysts. J Anal Appl Pyrolysis 129:53–60. https://doi.org/10.1016/j.jaap.2017.12.004

    Article  CAS  Google Scholar 

  34. Chen X, Yang H, Chen Y, Chen W, Lei T, Zhang W, Chen H (2017) Catalytic fast pyrolysis of biomass to produce furfural using heterogeneous catalysts. J Anal Appl Pyrolysis 127:292–298. https://doi.org/10.1016/j.jaap.2017.07.022

    Article  CAS  Google Scholar 

  35. Lu Q, Wang Z, Dong C, Zhang Z, Zhang Y, Yang Y, Zhu X (2011) Selective fast pyrolysis of biomass impregnated with ZnCl2: furfural production together with acetic acid and activated carbon as by-products. J Anal Appl Pyrolysis 91:273–279. https://doi.org/10.1016/j.jaap.2011.03.002

    Article  CAS  Google Scholar 

  36. Zhang H, Liu X, Lu M, Hu X, Lu L, Tian X, Ji J (2014) Role of Brønsted acid in selective production of furfural in biomass pyrolysis. Bioresource Technol 169:800–803. https://doi.org/10.1016/j.biortech.2014.07.053

    Article  CAS  Google Scholar 

  37. Wang T, Zhang R, Su W, Lu Q, Dong C (2016) Study on pyrolysis characteristics of red pepper stalks to analyze the changes of pyrolytic behaviors from xylophyta to herbage. J Anal Appl Pyrolysis 120:330–333. https://doi.org/10.1016/j.jaap.2016.05.020

    Article  CAS  Google Scholar 

  38. Fan L, Zhang Y, Liu S, Zhou N, Chen P, Cheng Y, Addy M, Lu Q, Omar MM, Liu Y, Wang Y, Dai L, Anderson E, Peng P, Lei H, Ruan R (2017) Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters. Bioresour Technol 241:1118–1126. https://doi.org/10.1016/j.biortech.2017.05.129

    Article  CAS  Google Scholar 

  39. Nagaraja BM, Jung H, Yang DR, Jung KD (2014) Effect of potassium addition on bimetallic PtSn supported θ-Al2O3 catalyst for n-butane dehydrogenation to olefins. Catal Today 232:40–52. https://doi.org/10.1016/j.cattod.2013.10.070

    Article  CAS  Google Scholar 

  40. Chaihad N, Karnjanakom S, Kurnia I, Yoshida A, Abudula A, Reubroycharoen P, Guan G (2018) Catalytic upgrading of bio-oils over high alumina zeolites. Renew Energy 136:1304–1310. https://doi.org/10.1016/j.renene.2018.09.102

    Article  CAS  Google Scholar 

  41. Watanabe M, Aizawa Y, Iida T, Nishimure N, Ionmata H (2005) Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: relationship between reactivity and acid-base property determined by TPD measurement. Appl Catal A-Gen 295:150–156. https://doi.org/10.1016/j.apcata.2005.08.007

    Article  CAS  Google Scholar 

  42. Cheng YT, Jae J, Shi J, Fan W, Huber GW (2012) Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angew Chem 51:1387–1390. https://doi.org/10.1002/anie.201107390

    Article  CAS  Google Scholar 

  43. Gou J, Wang Z, Li C, Qi X, Vattipalli V, Cheng Y, Huber G, Conner WC, Dauenhauer PJ, Mountziaris TJ, Fan W (2017) The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan. Green Chem 19:3549–3557. https://doi.org/10.1039/C7GC01395G

    Article  CAS  Google Scholar 

  44. Cheng YT, Huber GW (2012) Production of targeted aromatics by using diels-alder classes of reactions with furans and olefins over ZSM-5. Green Chem 14:3114–3125. https://doi.org/10.1039/C2GC35767D

    Article  CAS  Google Scholar 

  45. Zheng Y, Tao L, Huang Y, Liu C, Wang Z, Zheng Z (2019) Improving aromatic hydrocarbon content from catalytic pyrolysis upgrading of biomass on a CaO/HZSM-5 dual-catalyst. J Anal Appl Pyrolysis 140:355–366. https://doi.org/10.1016/j.jaap.2019.04.014

    Article  CAS  Google Scholar 

  46. Wu K, Yang M, Pu W, Wu Y, Shi Y, Hu H (2017) Carbon promoted ZrO2 catalysts for aqueous-phase ketonization of acetic acid. ACS Sustain Chem Eng 5:3509–3516. https://doi.org/10.1021/acssuschemeng.7b00226

    Article  CAS  Google Scholar 

  47. Pacchioni G (2014) Ketonization of carboxylic acids in biomass conversion over TiO2 and ZrO2 surfaces: a DFT perspective. ACS Catal 4:2874–2888. https://doi.org/10.1021/cs500791w

    Article  CAS  Google Scholar 

  48. Jeon MJ, Jeon JK, Suh DJ, Park SH, Sa YJ, Joo SH, Park YK (2013) Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS. Catal Today 204:170–178. https://doi.org/10.1016/j.cattod.2012.07.039

    Article  CAS  Google Scholar 

  49. Fontes MDSB, Melo DMA, Fontes LAO, Brage RM, Costa CC, Martinelli AE (2019) Ex situ catalytic biomass pyrolysis using mesoporous Ti-MCM-41. Environ Sci Pollut R 26:5983–5989. https://doi.org/10.1007/s11356-018-4003-x

    Article  CAS  Google Scholar 

  50. Maksudur RM, Ronghou L, Junmeng C (2018) Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil-a review. Fuel Process Technol 180:32–46. https://doi.org/10.1016/j.fuproc.2018.08.002

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31670599 and 31870570) and Major Scientific and Technological Projects of New Energy in Yunnan Province (2015ZB001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunwu Zheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lu, Y., Zhu, Y. et al. Catalytic Pyrolysis Vapor Upgrading of Corncob into Furans over Pyrolysis-Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometry: Significance of Catalyst and Temperature. Bioenerg. Res. 13, 1180–1193 (2020). https://doi.org/10.1007/s12155-020-10146-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10146-3

Keywords

Navigation