Skip to main content

Advertisement

Log in

Prooxidant and antimicrobic effects of iron and titanium oxide nanoparticles and thalicarpine

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The aim is to evaluate the prooxidant and antimicrobial effects of Fe3O4 and TiO2 nanoparticles and thalicarpine by luminescent and standard microbiological assays. Their effect on the kinetics of free-radical oxidation reactions (at pH 7.4 and pH 8.5) is studied in the following model systems, using activated chemiluminescence: chemical, with Fenton’s reagent (H2O2–FeSO4)—for the generation of hydroxyl radicals (.OH); chemical, with oxidant hydrogen peroxide (H2O2); chemical (NAD.H-PhMS), for the generation of superoxide radicals (O2.). Fe3O4 nanoparticles exhibit highly pronounced antioxidant properties; TiO2 nanoparticles exhibit mild to moderate prooxidant properties at neutral and alkaline conditions. Those properties are tested by the chemiluminescent method for the first time. Thalicarpine and its combination with TiO2 nanoparticles exhibit pronounced antioxidant activities at pH 8.5 which are lost and transformed into well-presented prooxidant effects at pH 7.4. That is a result-supported proof on the observed typical properties of thalicarpine and TiO2, namely antibacterial, organic-preserving and anti-pathogenic activities. The antimicrobial effect is tested on Gram-positive and Gram-negative bacteria: two strains of Escherichia coli, Bacillus cereus 1095 and Staphylococcus aureus. All bacteria are destroyed after the application of TiO2, but not Fe3O4 nanoparticles, showing their antibacterial effect. Thalicarpine, in combination with TiO2, showed even synergetic antibacterial effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong D, Brown R (1994) The analysis of free radicals, lipid peroxides, antioxidant enzymes and compounds related to oxidative stress as applied to the clinical chemistry laboratory. In: Armstrong D (ed) Free radicals in diagnostic medicine. Plenum Press, New York, pp 43–58

    Chapter  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Islam MS (2008) Fabrication and characterization of TiO2 2–epoxy nanocomposite. Mater Sci Eng A 487(1):574–585

    Article  Google Scholar 

  • Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL et al (2004) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Dar Bin Shieh. https://doi.org/10.1016/j.biomaterials.2004.03.016

    Article  Google Scholar 

  • Cui H, Zhang ZF, Shi MJ (2005) Chemiluminescent reactions induced by gold nanoparticles. J Phys Chem 109(8):3099–3103

    Article  CAS  Google Scholar 

  • Duchevska HB, Baruch SE, Philipov SA (1973) Method for isolation of thalicarpine from Thalictrum minus. Bulg Patent No. 19914

  • Faulkner K, Fridovich I (1993) Luminol and lucigenin as detectors for O2. Free Radic Biol Med 15:447–451

    Article  CAS  PubMed  Google Scholar 

  • Gabrielyan L, Hovhannisyan A, Gevorgyan V, Ananyan M, Trchounian A (2019) Antibacterial effects of iron oxide (Fe3O4) nanoparticles: distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Appl Microbiol Biot 103:2773–2782

    Article  CAS  Google Scholar 

  • Halliwell B (1996) Oxidative stress, nutrition and health, Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic Res 25:57–74

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119(6):598–620

    CAS  PubMed  Google Scholar 

  • Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29(2):345–350

    Article  CAS  PubMed  Google Scholar 

  • Kupchan MS, Chakravarti KK, Yokoyam N (1963) Thalictrum alkaloids I: Thalicarpine, a new hypotensive alkaloid from Thalictrum dasycarpum. J Pharm Sci 52(10):985–988

    Article  CAS  PubMed  Google Scholar 

  • Lewis A, Sheperd RG (1970) Antimycobacterial agents. In: Burger A (ed) Medicinal chemistry, 3rd edn. Wiley, New York, p 490

    Google Scholar 

  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352

    Article  CAS  PubMed  Google Scholar 

  • Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854

    Article  CAS  PubMed  Google Scholar 

  • Pavlova E, Lilova M, Savov VM (2002) Study of free radical peroxidation processes in urine by enhanced chemiluminescence. Annuaire de L’universite de Sofia “St.Kliment Ohridski” Faculte de Physique, Presses Universitaires 95:57–69

    CAS  Google Scholar 

  • Pavlova EL, Savov VM (2006) Chemiluminescent in vitro estimation of the inhibitory constants of antioxidants ascorbic and uric acids in Fenton’s reaction in urine. Biochemistry (Moscow) 71(8):861–863

    Article  CAS  Google Scholar 

  • Roy A, Parveen A, Koppalkar AR, Prasad MVNA (2010) Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol 1:37–41

    Article  CAS  Google Scholar 

  • Salem DMSA, Ismail MM, Aly-Eldeena MA (2019) Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. Egypt J Aquat Res 45(3):197–204

    Article  Google Scholar 

  • Santhosh M, Natarajan K (2015) Antibiofilm activity of epoxy/Ag-TiO2 polymer nanocomposite coatings against Staphylococcus aureus and Escherichia coli. Coatings 5:95–114

    Article  CAS  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. WIREs Nanomed Nanobiotechnol 2(5):544–568

    Article  CAS  Google Scholar 

  • Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:22

    Article  Google Scholar 

  • Udvardy A, Miskovics A, Sipos A (2014) Antibacterial aporphinoids—progress and perspectives based on structure activity analysis. Int Bull Drug Res 4(6):1–34

    CAS  Google Scholar 

  • Verdier T, Coutand M, Bertron A, Roques C (2014) Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: the influence of methodological aspects. Coatings 4(3):670–686

    Article  Google Scholar 

  • Wagner H (1988) Pharmazeutische biologie. Gustav Fischer Verlag, New York, p 170

    Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu WN, Beal JL, Doskotch RW (1977) Alkaloids of Thalictrum. XII. Isolation of alkaloids with hypotensive and antimicrobial activity from Thalictrum revolutum. Lloydia 40(5):508–514

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge Sofia University “St. Kliment Ohridski”, Bulgaria for the financial support of project under Contract number: 80-10-224/15.05.2019, Evaluation of the effects of nanoparticles on the free-radical oxidation processes by luminescent analysis, as well as the Ministry of Education and Science, Bulgaria, project Clean technologies for sustainable environment—waters, waste, energy for circular economy, Contract number: BG05M2OP001-1.002-0019. The authors acknowledge Assoc. Prof. Ivelin Panchev from the Biochemistry Department, Faculty of Biology, Sofia University “St. Kliment Ohridski” for help and support with a Bandelin Sonopuls device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elitsa L. Pavlova.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, E.L., Toshkovska, R.D., Doncheva, T.E. et al. Prooxidant and antimicrobic effects of iron and titanium oxide nanoparticles and thalicarpine. Arch Microbiol 202, 1873–1880 (2020). https://doi.org/10.1007/s00203-020-01902-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01902-2

Keywords

Navigation