Skip to main content
Log in

Mitsuaria chitinivorans sp. nov. a potential candidate for bioremediation: emended description of the genera Mitsuaria, Roseateles and Pelomonas

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

As a part of studying the effect of deoxygenation, eutrophication and acidification on bacterial diversity, strain HWN-4T was isolated from tube well water and characterized. The draft genome sequencing of strain HWN-4T revealed a genome size of 5,774,764 bp and the annotation indicated 5102 coding sequences including 66 RNA genes. Strain HWN-4T is Gram negative, rod-shaped, motile in the log phase, catalase and oxidase positive, and the major fatty acids and respiratory quinone present are C10:0 3-OH, C14:0 3OH/C16:1 iso I, C16:1 ω7c/C16:1 ω6c, C16:0 and C17:0 cyclo and ubiquinone-8, respectively. The phylogenetic analyses, based on 16S rRNA gene sequence, indicated that strain HWN-4T is a member of the genus Mitsuaria. The average nucleotide identity (ANI) and genome-to-genome similarity between strain HWN-4T and all other species/strains of the genus Mitsuaria are less than (%) 95.0 and 70.0, respectively. This confirms the status of strain HWN-4T as a novel species. The species status is further confirmed by phenotypic differences exhibited by strain HWN-4T with other members of the same genus. Based on the collective differences exhibited by strain HWN-4T with other members of the genus Mitsuaria, the name Mitsuaria chitinivorans sp. nov. is proposed. Further, the diagnostic signature nucleotides were identified in the 16S rRNA gene sequences of members of the genera Mitsuaria, Pelomonas and Roseateles, that distinctly differentiate them and support an emendation of the genera. Besides, phylogenetic and structural characterization of chitinases from members of the genus Mitsuaria was performed. The type strain of Mitsuaria chitinivorans sp. nov. is HWN-4T = LMG 28685T = KTCC 42483T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alam MZ, Muyibi SA, Jamal P (2007) Biological treatment of sewage treatment plant sludge by pure bacterial culture with optimum process conditions in a stirred tank bioreactor. J Environ Sci Health A Toxicol Hazard Subst Environ Eng 42:1671–1679

    CAS  Google Scholar 

  • Allen MM (1968) Simple conditions for growth of unicellular blue-green algae. J Gen Microbiol 51:199–202

    CAS  PubMed  Google Scholar 

  • Amakata D, Matsuo Y, Shimono K, Park JK, Yun CS, Matsuda H, Yokota A, Kawamukai M (2005) Mitsuariachitosanitabida gen. nov., sp. nov., an aerobic, chitosanase-producing member of the Betaproteobacteria. Int J Syst Evol Microbiol 55:1927–1932

    CAS  PubMed  Google Scholar 

  • Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit ribosomal RNA sequences. Lett Appl Microbiol 13:202–206

    CAS  Google Scholar 

  • Auch AF, von Jan M, Klenk HP, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome to genome sequence comparison. Stand Genomic Sci 2:117–134

    PubMed  PubMed Central  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75

    Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single cell sequencing. J Comput Biol 19:455–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertani G (1952) Studies on Lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    Google Scholar 

  • Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324

    PubMed  Google Scholar 

  • Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP, Graf J (2014) Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. MBio 5:e02136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus and related Vibrio species. J Bacteriol 104:410–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cydzik-Kwiatkowska A, Zielińska M (2016) Bacterial communities in full-scale wastewater treatment systems. World J Microbiol Biotechnol 32:66

    PubMed  PubMed Central  Google Scholar 

  • Dai X, Wang YN, Wang BJ, Liu SJ, Zhou YG (2005) Planomicrobium chinense sp. nov., isolated from coastal sediment, and transfer of Planococcus psychrophilus and Planococcus alkanoclasticus to Planomicrobium as Planomicrobium psychrophilum comb. nov. and Planomicrobium alkanoclasticum comb. nov. Int J Syst Evol Microbiol 55:699–702

    CAS  PubMed  Google Scholar 

  • Fan MC, Nan LJ, Zhu YM, Chen WM, Wei GH, Lin YB (2018) Mitsuarianoduli sp. nov., isolated from the root nodules of Robinia pseudoacacia in a lead-zinc mine. Int J Syst Evol Microbiol 68:87–92

    CAS  PubMed  Google Scholar 

  • Fitz-Gibbon ST, House CH (1999) Whole genome based phylogenetic analysis of free living microorganisms. Nucl Acids Res 27:4218–4222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH, Ingmer H, Palcic MM, Leisner JJ (2013) Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology 159:833–847

    CAS  PubMed  Google Scholar 

  • Gomila M, Bowien B, Falsen E, Moore ER, Lalucat J (2008) Description of Roseateles aquatilis sp. nov. and Roseateles terrae sp. nov., in the class betaproteobacteria, and emended description of the genus Roseateles. Int J Syst Evol Microbiol 58:6–11

    CAS  PubMed  Google Scholar 

  • Gügi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF (1991) Effect of growth temperature on several exported enzyme activities in the psychrotrophic bacterium Pseudomonas fluorescens. J Bacteriol 173:3814–3820

    PubMed  PubMed Central  Google Scholar 

  • Gupta A, Sharma VK (2015) Using the taxon-specific genes for the taxonomic classification of bacterial genomes. BMC Genom 16:396

    Google Scholar 

  • Halebian SB, Harris B, Finegold FM, Rolfei RD (1981) Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 13:444–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Justice SS, Hunstad DA, Cegelski L, Hultgren SJ (2008) Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6:162–168

    CAS  PubMed  Google Scholar 

  • Klumpp S, Hwa T (2014) Bacterial growth global effects on gene expression, growth feedback and proteome partition. Curr Opin Biotechnol 28:96–102

    CAS  PubMed  Google Scholar 

  • Kumar A, Kumar D, George N, Sharma P, Gupta N (2018) A process for complete biodegradation of shrimp waste by a novel marine isolate Paenibacillus sp. AD with simultaneous production of chitinase and chitin oligosaccharides. Int J Biol Macromol 109:263–272

    CAS  PubMed  Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lane DJ (1991) 16S–23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 15–147

    Google Scholar 

  • Lee SH, Choe H, Kim SG, Park DS, Nasir A, Kim BK, Kim KM (2016) Complete genome of biodegradable plastics decomposing Roseatelesdepolymerans KCTC 42856T=61AT. J Biotechnol 220:47–48

    CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacFaddin JF (1985) Media for isolation, cultivation, identification, maintenance of medical bacteria, vol 1. Williams & Wilkins, Baltimore

    Google Scholar 

  • Mander P, Cho SS, Choi YH, Panthi S, Choi YS, Kim HM, Yoo JC (2016) Purification and characterization of chitinase showing antifungal and biodegradation properties obtained from Streptomyces anulatus CS242. Arch Pharm Res 39:878–886

    CAS  PubMed  Google Scholar 

  • Marmur J (1961) Procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    CAS  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB net J 17:10–12

    Google Scholar 

  • Martínez-Núñez MA, Lópezy-López VE (2016) Nonribosomal peptides synthetases and their applications in industry. Sustain Chem Process 4:13

    Google Scholar 

  • Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T, Hamana K, Hiraishi A, Kato K (2006) Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin degrading bacterium. Int J Syst Evol Microbiol 56:85–89

    CAS  PubMed  Google Scholar 

  • McIntosh JA, Donia MS, Schmidt EW (2009) Ribosomal peptide natural products: bridging the ribosomal and non-ribosomal worlds. Nat Prod Rep 26:537–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene cluster in bacterial and fungal genome sequences. Nucl Acid Res 39:W339–W346

    CAS  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa A, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    PubMed  PubMed Central  Google Scholar 

  • Noda M, Takano T, Sakurai H (1979) Mutagenic activity of selenium compounds. Mutat Res 66:175–179

    CAS  PubMed  Google Scholar 

  • Ogawa K, Yoshida N, Kariya K, Ohnishi C, Ikeda R (2002) Purification and characterization of a novel chitinase from Burkholderia cepacia strain KH2 isolated from the bed log of Lentinus edodes, Shiitake mushroom. J Gen Appl Microbiol 48:25–33

    CAS  PubMed  Google Scholar 

  • Park JK, Shimono K, Ochiai N, Shigeru K, Kurita M, Ohta Y, Tanaka K, Matsuda H, Kawamukai M (1999) Purification, characterization, and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001. J Bacteriol 181:6642–6649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, González B (2012) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 14:1091–1117

    PubMed  Google Scholar 

  • Prameela K, Murali Mohan Ch, Smitha PV, Hemalatha KPJ (2010) Bioremediation of shrimp biowaste by using natural probiotic for chitin and carotenoid production an alternative method to hazardous chemical method. Int J Appl Biol Pharm Technol 1:903–910

    Google Scholar 

  • Reddy GSN (2013) Phylogenetic analyses of the genus Hymenobacter and description of Siccationidurans gen. nov., and Parahymenobacter gen. nov. J Phylogenet Evol Biol 1:122

    Google Scholar 

  • Reddy GSN, Garcia-Pichel F (2009) Description of Patulibacter americanus sp. nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al. 2006 and proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov. Int J Syst Evol Microbiol 59:87–94

    CAS  PubMed  Google Scholar 

  • Rong X, Gurel FB, Meulia T, McSpadden Gardener BB (2012) Draft genome sequences of the biocontrol bacterium Mitsuaria sp. strain H24L5A. J Bacteriol 194:734–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sangal V, Nieminen L, Tucker NP, Hoskisson PA (2014) Revolutionizing systematics through next-generation sequencing. In: Goodfellow M, Sutcliffe IC, Chun J (eds) Methods in microbiology: bacterial taxonomy, Ch. 5, vol 41. Elsevier, Amsterdam, pp 75–101

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  • Scherer C, Müller KD, Rath PM, Ansorg RA (2003) Influence of culture conditions on the fatty acid profiles of laboratory adapted and freshly isolated strains of Helicobacter pylori. J Clin Microbiol 41:1114–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaji S, Reddy GSN (2014) Phylogenetic analyses of the genus Glaciecola: emended description of the genus Glaciecola, transfer of Glaciecola mesophila, G. agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. polaris and G. psychrophila to the genus Paraglaciecola gen. nov. as Paraglaciecola mesophila comb. nov., P. agarilytica comb. nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P. polaris comb. nov. and P. psychrophila comb. nov., and description of Paraglaciecola oceanifecundans sp. nov., isolated from the Southern Ocean. Int J Syst Evol Microbiol 64:3264–3275

    CAS  PubMed  Google Scholar 

  • Shivaji S, Reddy GSN, Sundareswaran VR, Thomas C (2015) Description of Thalassospira lohafexi sp. nov., isolated from Southern Ocean, Antarctica. Arch Microbiol 197:627–637

    CAS  PubMed  Google Scholar 

  • Shivaji S, Chakraborty D, Adicherla H, Reddy GSN (2017) Emended description of the family Chromatiaceae, phylogenetic analyses of the genera Alishewanella, Rheinheimera and Arsukibacterium, transfer of Rheinheimera longhuensis LH2-2 to the genus Alishewanella and description of Alishewanellaalkalitolerans sp. nov. from Lonar Lake India. Antonie Van Leeuwenhoek 110:1227–1241

    Google Scholar 

  • Sinha S, Chand S, Tripathi P (2014) Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds. Prikl Biokhim Mikrobiol 50:147–155

    CAS  PubMed  Google Scholar 

  • Sousa AM, Machado I, Pereira MO (2011) Phenotypic switching: an opportunity to bacteria thrive. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, vol 1. Formatexa, Badajoz, pp 252–262

    Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey N (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Google Scholar 

  • Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S, Hosoya H, Tokiwa Y, Kanagawa T, Hanada S (1999) Roseatelesdepolymerans gen. nov., sp. nov., a new bacteriochlorophyll a containing obligate aerobe belonging to the beta subclass of the Proteobacteria. Int J Syst Bacteriol 49:449–457

    PubMed  Google Scholar 

  • Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36

    CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tindall B, Sikorski J, Smibert R, Krieg N (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (eds) Methods for general and molecular microbiology, 3rd edn. ASM Press, Washington, DC, pp 330–393

    Google Scholar 

  • Truglio JJ, Croteau DL, Van Houten B, Kisker C (2006) Prokaryotic nucleotide excision repair: The UvrABC system. Chem Rev 106:233–252

    CAS  PubMed  Google Scholar 

  • Vandamme P, Peeters C (2014) Time to revisit polyphasic taxonomy. Antonie Van Leeuwenhoek 106:57–65

    PubMed  Google Scholar 

  • Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, Pati A (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Res 43:6761–6771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wall ME, Hlavacek WS, Savageau MA (2004) Design of gene circuits: lessons from bacteria. Nat Rev Genet 5:34–42

    CAS  PubMed  Google Scholar 

  • Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0 a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucl Acid Res 43:237–243

    Google Scholar 

  • Weimann A, Mooren K, Frank J, Pope PB, Bremges A, McHardy AC (2016) From genomes to phenotypes: traitar, the microbial trait analyzer. mSystems 1:e00101–e116

    PubMed  PubMed Central  Google Scholar 

  • Xie CH, Yokota A (2005) Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonassaccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 55:2419–2425

    PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young KD (2007) Bacterial morphology: why have different shapes? Curr Opin Microbiol 10:596–600

    PubMed  PubMed Central  Google Scholar 

  • Young LY, Hiiggblom MM (1991) Biodegradation of toxic and environmental pollutants. Curr Opin Biotechnol 2:429–435

    CAS  PubMed  Google Scholar 

  • Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Council for Scientific and Industrial Research (CSIR), India, for funding the project INDIA’s IDEA (PSC0108). We also thank Dr. SWA Naqvi, Director, CSIR-NIO, for coordinating the activities of the INDIA’s IDEA project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathyanarayana Reddy Gundlapally.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank accession number for the 16S rRNA gene sequence and the draft genome sequence of Mitsuaria chitinivorans sp. nov. (HWN-4T) are MH077556 and PEOG00000000, respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisinthy, S., Gundlapally, S.R. Mitsuaria chitinivorans sp. nov. a potential candidate for bioremediation: emended description of the genera Mitsuaria, Roseateles and Pelomonas. Arch Microbiol 202, 1839–1848 (2020). https://doi.org/10.1007/s00203-020-01905-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01905-z

Keywords

Navigation