Skip to main content
Log in

Characterization of Fully Developed Pressure-Driven, Shear-Driven and Combined Pressure and Shear Driven Flow of Sisko Fluids Through Rectangular Channels

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Pressure-driven, shear-driven and combined pressure and shear driven flow of a non-Newtonian Sisko fluid through rectangular channels is investigated. Inclusion of the aspect ratio in the formulation yields a highly nonlinear partial differential equation, which is not reported in the existing literature. Thus, neither analytical nor numerical solution to this equation is available in the open literature. In the present study, the partial differential equation, describing the flow, is solved employing the finite difference method. Explicit method is adopted, and the solution for the non-dimensional velocity and wall shear stress is obtained. An exact solution for the flow of a Sisko fluid, for a special case (for non-Newtonian index 2), through large parallel plates (aspect ratio to be zero) is obtained. Expression for the friction factor, including the effect of the aspect ratio, is given. The effects of the aspect ratio, Sisko fluid parameter, non-Newtonian index on the non-dimensional velocity distribution and shear-stress distribution are analyzed both for shear-thinning and shear-thickening fluids. The results indicate that for pressure-driven flow, the effect of the aspect ratio on the velocity is negligible when it is less than 0.1. In case of shear-driven flow and combined pressure and shear driven flow also, the characteristics of flow through large parallel plates exist in nearly 50% of the channel for the aspect ratio of 0.1 or less, which means that for up to 50% of the channel, near the core, the parallel plates assumption will generate reasonably accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\( \tilde{A}_{1} \) :

1st Rivlin–Erickson tensor

\( \vec{B} \) :

Body force per unit volume (N/m3)

a :

Material constant (Ns/m2)

b :

Material constants (Ns/mn−1)

\( b^{*} \) :

Sisko fluid parameter

D e :

Hydraulic diameter (m)

f :

Friction factor

f fr :

Friction factor

g :

Acceleration due to gravity (m/s2)

\( \tilde{I} \) :

Identity matrix

k1, k2, k3, k4 :

Constant

\( \tilde{L} \) :

Velocity gradient matrix (1/s)

2L1 :

Depth of the channel (m)

2L2 :

Width of the channel (m)

n :

Material constant

p :

Pressure (N/m2)

r :

The locator where the maximum velocity occurs (m)

Re:

Reynold number

Rem :

Modified Reynolds number

ReN :

Reynolds number for Newtonian fluid

Rep :

Reynolds number for power law fluid

\( \tilde{S} \) :

Extra stress tensor (N/m2)

\( \tilde{T} \) :

Canely’s stress tensor (N/m2)

t :

Time (s)

u :

Dimensional coordinate along x direction (m/s)

\( u^{*} \) :

Non-dimensional coordinate along axial direction

u p :

Velocity of upper plate (m/s)

u avg :

Average velocity (m/s)

u 1 :

Velocity in region 1

u 2 :

Velocity in region 2

\( \vec{V} \) :

Velocity vector (m/s)

x, y, z :

Dimensional coordinates along axial, vertical and lateral direction (m)

x*, y*, z*:

Non-dimensional coordinates along axial, vertical and lateral directions

ρ :

Density (kg/m3)

τ xy :

Shear stress along axial direction (N/m)

τ xz :

Shear stress along lateral direction (N/m)

μ e :

Effective viscosity (Ns/m2)

References

  1. Shashikumar, N.S.; Gireesha, B.J.; Mahantesh, B.; Prasannakumar, B.C.; Chamkha, A.J.: Entropy generation analysis of magneto-nano liquids embedded with aluminium and titanium alloy nano particles in micro channel with partial slips and convective conditions. Int. J. Numer. Methods Heat Fluid Flow 29(10), 3638–3658 (2019)

    Article  Google Scholar 

  2. Menni, Y.; Chamkha, A.J.; Massarotti, N.; Kaid, H.A.N.; Bensafi, M.: Hydrodynamic and thermal analysis of water, ethylene glycol as base fluids dispersed by aluminium oxide nano-sized solid particles. Int. J. Numer. Methods Heat Fluid Flow (2020). https://doi.org/10.1108/HFF-10-2019-0739

    Article  Google Scholar 

  3. Chamkha, A.J.: Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes. Int. J. Heat Fluid Flow 21, 740–746 (2000)

    Article  Google Scholar 

  4. Selimefendigil, F.; Oztop, H.F.; Chamkha, A.J.: Mixed convection of pulsating ferrofluid flow over a backward-facing step. Iran. J. Sci. Technol. Trans. Mech. Eng. (2018). https://doi.org/10.1007/s40997-018-0238-x

    Article  Google Scholar 

  5. Umavathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-, Mudlaf A.: Unsteady two-fluid flow and heat transfer in a horizontal channel. Heat Mass Transf. 42, 81–90 (2008)

    Article  Google Scholar 

  6. Chamkha, A.J.: On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions. Int. J. Heat Mass Transf. 45, 2509–2525 (2002)

    Article  Google Scholar 

  7. Chamkha, A.J.; Molana, M.; Rahnama, A.; Ghadami, F.: On the nanofluids applications in micro channels: a comprehensive review. Powder Technol. 332, 287–322 (2018)

    Article  Google Scholar 

  8. Umaathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-Mudahf, A.: Unsteady oscillatory flow and heat transfer in a horizontal composite porous medium channel. Nonlinear Anal. Model. Control 14, 397–415 (2009)

    Article  Google Scholar 

  9. Alsabey, A.I.; Habibi, S.; Ghalambaz, M.; Chamkha, A.J.; Hashim, I.: Fluid-structure interaction analysis of transient convection heat transfer in a cavity containing inner solid cylinder and flexible right wall. Int. J. Numer. Methods Heat Fluid Flow 29, 3756–3780 (2019)

    Article  Google Scholar 

  10. Alsabery, A.I.; Selimefendigil, F.; Hashim, I.; Chamkha, A.J.; Ghalambaz, M.: Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. Int. J. Heat Mass Transf. 140, 331–345 (2019)

    Article  Google Scholar 

  11. Ghalambaz, M.; Mehryan, S.A.M.; Ismael, M.A.; Chamkha, A.J.; Wen, D.: Fluid-structure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. Int. J. Numer. Methods Heat Fluid Flow (2019). https://doi.org/10.1108/HFF-12-2018-0826

    Article  Google Scholar 

  12. Ghalambaz, M.; Mehryan, S.A.M.; Izadpanhai, E.; Chamkha, A.J.; Wen, D.: MHD natural convection of Cu-Al2O3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. J. Therm. Anal. Calorim. 138, 1723–1743 (2019)

    Article  Google Scholar 

  13. Joseph, D.D.; Narain, A.; Riccius, O.: Shear wave speeds and elastic moduli for different liquids-part 1: theory. J. Fluid Mech. 171(1), 289–308 (1986)

    Article  Google Scholar 

  14. Filalai, A.; Lyes, K.; Siginer, D.A.; Nemouchi, Z.: Graetz problem with non-linear visco-elastic fluids in non-circular tubes. Int. J. Therm. Sci. 66, 50–60 (2012)

    Article  Google Scholar 

  15. Siginer, D.A.; Letelier, M.A.: Heat transfer asymptote in laminar of non-linear visco-elastic fluids in straight non-circular tubes. Int. J. Eng. Sci. 48, 1544–1562 (2010)

    Article  Google Scholar 

  16. Narain, A.: On K-BKZ and other visco-elastic models as continuum generalizations of the classical spring-dashpot models. Rheol. Acta 25(1), 1–14 (1986)

    Article  Google Scholar 

  17. Tso, C.P.; Sheela-Fransica, J.; Hung, Y.M.: Viscous dissipation effects of power-law fluid flow within parallel plates with constant heat fluxes. J. Non Newton. Fluid Mech. 165, 625–630 (2010)

    Article  Google Scholar 

  18. Wang, L.; Jian, Y.; Liu, Q.; Li, F.; Chang, L.: Electromagnetohydrodynamic flow and heat transfer of third grade fluids between two micro-parallel plates. Colloids Surf. Physicochem. Eng. Asp. 494, 87–94 (2016)

    Article  Google Scholar 

  19. Danish, M.; Kumar, S.; Kumar, S.: Exact analytical solutions for the Poiseuille and Couette–Poiseuille flow of third grade fluid between parallel plates. Commun. Non Linear Sci. Numer. Simul. 17, 1089–1097 (2012)

    Article  MathSciNet  Google Scholar 

  20. Akbarzadeh, P.: Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a non-Newtonian third grade fluids model. Comput. Methods Progr. Biomed. 126, 3–19 (2016)

    Article  Google Scholar 

  21. Sisko, A.W.: The flow of lubricating greases. Ind. Eng. Chem. Res. 50, 1789–1790 (1958)

    Article  Google Scholar 

  22. Khan, M.; Munwar, S.; Abbasbandy, S.: Steady flow and heat transfer of a Sisko fluid in annular pipe. Int. J. Heat Mass Transf. 53, 1290–1297 (2010)

    Article  Google Scholar 

  23. Liao, S.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003)

    Article  MathSciNet  Google Scholar 

  24. Chaudhuri, S.; Das, P.K.: Semi-analytical solution of the heat transfer including viscous dissipation in steady flow of Sisko fluids in cylindrical tubes. J. Heat Transf. 143, 071701-1–071701-9 (2018)

    Google Scholar 

  25. Hatami, M.; Ganji, D.D.: Thermal and flow analysis of micro channel heat sink (MCHS) cooled by Cu-water nano fluid by porous media approach and least square method. Energy Convers. Manag. 78, 347–358 (2014)

    Article  Google Scholar 

  26. Hatami, M.; Sheikholeslami, M.; Ganji, D.D.: Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technol. 253, 769–779 (2014)

    Article  Google Scholar 

  27. Siddiqui, A.M.; Ansari, A.R.; Ahmad, A.; Ahmad, N.: On Taylor’s scraping problem and flow of a Sisko fluid. Math. Model. Anal. 14, 515–529 (2009)

    Article  MathSciNet  Google Scholar 

  28. Khan, M.I.; Hayat, T.; Qayyum, S.; Khan, M.I.; Alsaedi, A.: Entropy generation (irreversibility) associated with flow and heat transport mechanism in Sisko nanomaterial. Phys. Lett. A 382, 2343–2353 (2018)

    Article  MathSciNet  Google Scholar 

  29. Sajid, M.; Hayat, T.: Wire coating analysis by withdrawal from a bath of Sisko fluid. Appl. Math. Comput. 199, 13–22 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Nadeem, S.; Akbar, N.S.; Vajravelu, K.: Peristaltic flow of a Sisko fluid in an endoscope: analytical and numerical solutions. Int. J. Comput. Math. 88, 1013–1023 (2011)

    Article  MathSciNet  Google Scholar 

  31. Nadeem, S.; Akbar, N.S.: Peristaltic flow of Sisko fluid in a uniform inclined tube. Acta. Mech. Sin. 26, 675–683 (2010)

    Article  MathSciNet  Google Scholar 

  32. Zeeshan, A.; Ali, N.; Ahmed, R.; Waqas, M.; Khan, W.A.: A mathematical frame work for peristaltic flow analysis of non-Newtonian Sisko fluid in an undulating porous curved channel with heat and mass transfer effect. Comput. Methods Progr. Biomed. 182, 105040 (2019)

    Article  Google Scholar 

  33. Shaheen, A.; Asjad, M.I.: Peristaltic flow of a Sisko fluid over a convectively heated surface with viscous dissipation. J. Phys. Chem. Solids 122, 210–217 (2018)

    Article  Google Scholar 

  34. Ali, M.; Khan, W.A.; Sultan, F.; Shahzad, M.: Numerical investigation on thermally radiative time-dependent Sisko nanofluid flow for curved surface. Phys. A 550, 124012 (2019)

    Article  Google Scholar 

  35. Chaudhuri, S.; Sahoo, S.: Effect of aspect ratio on flow characteristics of magnetohydrodynamic (MHD) third grade fluid flow through a rectangular channel. Sadhana 40, 106 (2018)

    Article  MathSciNet  Google Scholar 

  36. Gupta, B.R.: Polymer Processing Technology. Asian Books Private Limited, New Delhi (2008)

    Google Scholar 

Download references

Acknowledgement

The work is supported by Indian Institute of Technology (ISM), Dhanbad (FRS/110/2017-18/MECH. ENGG.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhuri, S., Sahoo, S. Characterization of Fully Developed Pressure-Driven, Shear-Driven and Combined Pressure and Shear Driven Flow of Sisko Fluids Through Rectangular Channels. Arab J Sci Eng 45, 5925–5947 (2020). https://doi.org/10.1007/s13369-020-04621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04621-4

Keywords

Navigation