Skip to main content
Log in

Comparative Study of Conjugate Heat Transfer Characteristics in Chevron Corrugated Plate Heat Exchanger Using CuO Nanocoolant

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In every thermal system in industry equipped with a heat exchanger, enhancement in heat transfer with the aid of good thermal conductive nanocoolants without the escalation in pressure drop is promising research area. In line with this motive, the present work carried out a numerical analysis on conjugate heat transfer characteristics of plate heat exchanger (PHE) in the application of a food processing plant in which CuO nanofluid is used as a coolant. A 3D geometry of PHE is developed with configurations of plate considered as L-theta and H-theta for the investigation using commercially available ANSYS-FLUENT 15.0. Further, simulations studies on both H-theta (β = 30°) and L-theta (β = 55°) are carried out using CuO–water nanofluid for different volumetric concentrations (0, 0.5, 1, 1.5, 2, 2.5 and 3%). The wide range of Reynolds numbers (600 ≤ Re ≤ 2500) is considered within turbulent regime for the case of PHE where kω SST with transitional flow enabled model is used for better results. The results of both L- and H-theta plates are presented in terms of isotherms, contours of velocity at different concentrations of CuO nanofluid. The effect of pertinent parameters like friction factor, Peclet number and average Nusselt and Reynolds numbers on coupled heat transfer is studied. A drastic drop in pressure is observed during heat transfer studies at a concentration greater than 1.5 vol.% for the CuO nanofluid. The enhancement of heat transfer and optimum pressure drop that contributes low pumping power consumption is observed at 1.5 vol.% water-based CuO nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

PHE :

Plate heat exchanger

Re:

Reynolds number

NTU :

Number of transfer units

K :

Thermal conductivity (W/m K)

Cp :

Specific heat capacity (kJ/kg K)

U :

Velocity (m/s)

T :

Temperature (K)

G :

Specific mass flow rate (kg/m2 s)

D h :

Hydraulic diameter (m)

a :

Area (m2)

Pe:

Peclet number

L-plate :

Low theta plate

H-plate :

High theta plate

H :

Heat transfer coefficient (W/m2 K)

Nu:

Nusselt number

f :

Friction factor

g c :

Gravitational constant

I :

Turbulent intensity

P :

Pressure

:

Particle volume fraction (%)

ρ :

Density (kg/m3)

µ :

Dynamic viscosity (Pa s)

α :

Thermal diffusivity (m2/s)

ε :

Effectiveness

β :

Chevron angle (°)

n :

Nanofluid

w :

Water

p :

Particle

m :

Mass fraction

t :

Time dependent (s)

References

  1. Yousefi, M.; Darus, A.N.; Mohammadi, H.: An imperialist competitive algorithm for optimal design of plate-fin heat exchangers. Int. J. Heat Mass Transf. 55, 3178–3185 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.041

    Article  Google Scholar 

  2. Li, W.; Li, H.; Li, G.; Yao, S.: Numerical and experimental analysis of composite fouling in corrugated plate heat exchangers. Int. J. Heat Mass Transf. 63, 351–360 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.073

    Article  Google Scholar 

  3. Quintero, A.E.; Vera, M.; Rivero-de-Aguilar, B.: Wall conduction effects in laminar counterflow parallel-plate heat exchangers. Int. J. Heat Mass Transf. 70, 939–953 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.063

    Article  Google Scholar 

  4. Boxler, C.; Augustin, W.; Scholl, S.: Composition of milk fouling deposits in a plate heat exchanger under pulsed flow conditions. J. Food Eng. 121, 1–8 (2014)

    Article  Google Scholar 

  5. Wang, W.; Guo, J.; Zhang, S.; Yang, J.; Ding, X.; Zhan, X.: Numerical study on hydrodynamic characteristics of plate-fin heat exchanger using porous media approach. Comput. Chem. Eng. 61, 30–37 (2014)

    Article  Google Scholar 

  6. Nagarajan, V.; Chen, Y.; Wang, Q.; Ma, T.: Numerical analysis of steady state and transient analysis of high temperature ceramic plate-fin heat exchanger. Nucl. Eng. Des. 277, 76–94 (2014). https://doi.org/10.1016/j.nucengdes.2014.06.016

    Article  Google Scholar 

  7. Imran, M.; Pambudi, N.A.; Farooq, M.: Thermal and hydraulic optimization of plate heat exchanger using multi objective genetic algorithm. Case Stud. Therm. Eng. 10, 570–578 (2017). https://doi.org/10.1016/j.csite.2017.10.003

    Article  Google Scholar 

  8. Nilpueng, K.; Keawkamrop, T.; Ahn, H.S.; Wongwises, S.: Effect of chevron angle and surface roughness on thermal performance of single-phase water flow inside a plate heat exchanger. Int. Commun. Heat Mass Transf. 91, 201–209 (2018)

    Article  Google Scholar 

  9. Chennu, R.; Veeredhi, V.R.: Measurement of heat transfer coefficient and pressure drops in a compact heat exchanger with lance and offset fins for water based Al2O3 nano-fluids. Heat Mass Transf. 56, 257–267 (2020). https://doi.org/10.1007/s00231-019-02707-w

    Article  Google Scholar 

  10. Pandey, S.D.; Nema, V.K.: Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Exp. Therm. Fluid Sci. 38, 248–256 (2012). https://doi.org/10.1016/j.expthermflusci.2011.12.013

    Article  Google Scholar 

  11. Tiwari, A.K.; Ghosh, P.; Sarkar, J.: Performance comparison of the plate heat exchanger using different nanofluids. Exp. Therm. Fluid Sci. 49, 141–151 (2013)

    Article  Google Scholar 

  12. Kumar, V.; Tiwari, A.K.; Ghosh, S.K.: Effect of variable spacing on performance of plate heat exchanger using nanofluids. Energy. 114, 1107–1119 (2016)

    Article  Google Scholar 

  13. Jokar, A.; O’Halloran, S.P.: Heat transfer and fluid flow analysis of nanofluids in corrugated plate heat exchangers using computational fluid dynamics simulation. J. Therm. Sci. Eng. Appl. 5, 011002 (2013). https://doi.org/10.1115/1.4007777

    Article  Google Scholar 

  14. Kabeel, A.E.; Abou El Maaty, T.; El Samadony, Y.: The effect of using nano-particles on corrugated plate heat exchanger performance. Appl. Therm. Eng. 52, 221–229 (2013). https://doi.org/10.1016/j.applthermaleng.2012.11.027

    Article  Google Scholar 

  15. Javadi, F.S.; Sadeghipour, S.; Saidur, R.; BoroumandJazi, G.; Rahmati, B.; Elias, M.M.; Sohel, M.R.: The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger. Int. Commun. Heat Mass Transf. 44, 58–63 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.03.017

    Article  Google Scholar 

  16. Khairul, M.A.; Alim, M.A.; Mahbubul, I.M.; Saidur, R.; Hepbasli, A.; Hossain, A.: Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. Int. Commun. Heat Mass Transf. 50, 8–14 (2014)

    Article  Google Scholar 

  17. Li, Z.; Sheikholeslami, M.; Jafaryar, M.; Shafee, A.; Chamkha, A.J.: Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes. J. Mol. Liq. 266, 797–805 (2018). https://doi.org/10.1016/j.molliq.2018.07.009

    Article  Google Scholar 

  18. Maddah, H.; Aghayari, R.; Mirzaee, M.; Ahmadi, M.H.; Sadeghzadeh, M.; Chamkha, A.J.: Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3–TiO2 hybrid nanofluid. Int. Commun. Heat Mass Transf. 97, 92–102 (2018). https://doi.org/10.1016/j.icheatmasstransfer.2018.07.002

    Article  Google Scholar 

  19. Nasrin, R.; Alim, M.A.; Chamkha, A.J.: Combined convection flow in triangular wavy chamber filled with water–CuO nanofluid: effect of viscosity models. Int. Commun. Heat Mass Transf. 39, 1226–1236 (2012)

    Article  Google Scholar 

  20. Ismael, M.A.; Chamkha, A.J.: Conjugate natural convection in a differentially heated composite enclosure filled with a nanofluid. J. Porous Media. 18, 699–716 (2015)

    Article  Google Scholar 

  21. Ismael, M.A.; Armaghani, T.; Chamkha, A.J.: Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular solid. J. Taiwan Inst. Chem. Eng. 59, 138–151 (2016)

    Article  Google Scholar 

  22. Chamkha, A.J.; Ismael, M.A.: Conjugate heat transfer in a porous cavity heated by a triangular thick wall. Numer. Heat Transf. Part Appl. 63, 144–158 (2013). https://doi.org/10.1080/10407782.2012.724327

    Article  Google Scholar 

  23. Snoussi, L.; Ouerfelli, N.; Sharma, K.V.; Vrinceanu, N.; Chamkha, A.J.; Guizani, A.: Numerical simulation of nanofluids for improved cooling efficiency in a 3D copper microchannel heat sink (MCHS). Phys. Chem. Liq. 56, 311–331 (2018). https://doi.org/10.1080/00319104.2017.1336237

    Article  Google Scholar 

  24. Fakoor Pakdaman, M.; Akhavan-Behabadi, M.A.; Razi, P.: An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp. Therm. Fluid Sci. 40, 103–111 (2012). https://doi.org/10.1016/j.expthermflusci.2012.02.005

    Article  Google Scholar 

  25. Ashtiani, D.; Akhavan-Behabadi, M.A.; Pakdaman, M.F.: An experimental investigation on heat transfer characteristics of multi-walled CNT-heat transfer oil nanofluid flow inside flattened tubes under uniform wall temperature condition. Int. Commun. Heat Mass Transf. 39, 1404–1409 (2012). https://doi.org/10.1016/j.icheatmasstransfer.2012.07.017

    Article  Google Scholar 

  26. Huang, D.; Wu, Z.; Sunden, B.: Effects of hybrid nanofluid mixture in plate heat exchangers. Exp. Therm. Fluid Sci. 72, 190–196 (2016)

    Article  Google Scholar 

  27. Parvin, S.; Chamkha, A.J.: An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid. Int. Commun. Heat Mass Transf. 54, 8–17 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.02.031

    Article  Google Scholar 

  28. Chamkha, A.J.; Ismael, M.A.: Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer. Heat Transf. Part Appl. 65, 1089–1113 (2014). https://doi.org/10.1080/10407782.2013.851560

    Article  Google Scholar 

  29. Parvin, S.; Nasrin, R.; Alim, M.A.; Hossain, N.F.; Chamkha, A.J.: Thermal conductivity variation on natural convection flow of water–alumina nanofluid in an annulus. Int. J. Heat Mass Transf. 55, 5268–5274 (2012)

    Article  Google Scholar 

  30. Chamkha, A.J.: Non-darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numer. Heat Transf. Part Appl. 32, 653–675 (1997). https://doi.org/10.1080/10407789708913911

    Article  Google Scholar 

  31. Alsabery, A.I.; Chamkha, A.J.; Saleh, H.; Hashim, I.: Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium. Sci. Rep. 7, 1–18 (2017). https://doi.org/10.1038/s41598-017-02241-x

    Article  Google Scholar 

  32. Duangthongsuk, W.; Wongwises, S.: Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int. J. Heat Mass Transf. 52, 2059–2067 (2009)

    Article  Google Scholar 

  33. Fotukian, S.M.; Nasr Esfahany, M.: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int. Commun. Heat Mass Transf. 37, 214–219 (2010)

    Article  Google Scholar 

  34. Huminic, G.; Huminic, A.: Application of nanofluids in heat exchangers: a review. Renew. Sustain. Energy Rev. 16, 5625–5638 (2012). https://doi.org/10.1016/j.rser.2012.05.023

    Article  MATH  Google Scholar 

  35. Tohidi, A.; Ghaffari, H.; Nasibi, H.; Mujumdar, A.S.: Heat transfer enhancement by combination of chaotic advection and nanofluids flow in helically coiled tube. Appl. Therm. Eng. 86, 91–105 (2015). https://doi.org/10.1016/j.applthermaleng.2015.04.043

    Article  Google Scholar 

  36. Elias, M.M.; Saidur, R.; Ben-Mansour, R.; Hepbasli, A.; Rahim, N.A.; Jesbains, K.: Heat transfer and pressure drop characteristics of a plate heat exchanger using water based Al2O3 nanofluid for 30° and 60° chevron angles. Heat Mass Transf. 54, 2907–2916 (2018). https://doi.org/10.1007/s00231-018-2335-1

    Article  Google Scholar 

  37. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994). https://doi.org/10.2514/3.12149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaraju Dora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dora, N., Mendu, S.S. & Lakshmipati Raju, B. Comparative Study of Conjugate Heat Transfer Characteristics in Chevron Corrugated Plate Heat Exchanger Using CuO Nanocoolant. Arab J Sci Eng 45, 8955–8967 (2020). https://doi.org/10.1007/s13369-020-04631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04631-2

Keywords

Navigation