Skip to main content
Log in

Large tunable lateral shift in prism coupling system containing a superconducting slab

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A large and tunable lateral shift in a prism coupling system with a superconducting YBa2Cu3O7 film is theoretically analyzed. The dip of the reflectivity and magnitude of the lateral shift can be controlled by the temperature of the superconducting film. The sign of the lateral shift can be determined by the thickness of the superconducting film. The position of the minimum reflection and maximum Goos–Hänchen shift can be conveniently adjusted by the thickness of the dielectric layer and incident light frequency. The largest shift, as high as 1550 times the free space wavelength, is achieved for the incident light frequency \(\omega = 98\) THz. The numerical calculation results from the Gaussian beam are in accordance with the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Goos, H. Hänchen, Ein neuer und fundamentaler Versuch zur Totalreflektion. Ann. Phys. 1, 333–346 (1947)

    Article  Google Scholar 

  2. K. Artmann, Berechnung der Seitenversetzung des totalreflektierten Strahles. Ann. Phys. 2, 87–102 (1948)

    Article  MATH  Google Scholar 

  3. Y. Xiang, X. Dai, S. Wen, Negative and positive Goos–Hänchen shifts of a light beam transmitted from an indefinite medium slab. Appl. Phys. A 87, 285–290 (2007)

    Article  ADS  Google Scholar 

  4. L.G. Wang, H. Chen, S.Y. Zhu, Large negative Goos–Hänchen shift from a weakly absorbing dielectric slab. Opt. Lett. 30(21), 2936–2938 (2005)

    Article  ADS  Google Scholar 

  5. M. Merano, A. Aiello, T.H. Gw, M.P. van Exter, E.R. Eliel, J.P. Woerdman, Observation of Goos–Hänchen shifts in metallic reflection. Opt. Express 15(24), 15928–15934 (2007)

    Article  ADS  Google Scholar 

  6. J. Liu, W. Kong, Z. Xin, Y. Liu, Y. Wan, Y. Bian et al., Nearly three orders of magnitude enhancement of Goos–Hänchen shift by exciting bloch surface wave. Opt. Express 20(8), 8998 (2012)

    Article  ADS  Google Scholar 

  7. A. Farmani, M. Miri, M.H. Sheikhi, Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure. Opt. Commun. 391, 68–76 (2017)

    Article  ADS  Google Scholar 

  8. A. Farmani, M. Miri, Z. Sharifpour, Broadly tunable and bidirectional terahertz graphene plasmnic switch based on enhanced Goos–Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018)

    Article  ADS  Google Scholar 

  9. Y.Q. Kang, W. Ren, Q. Cao, Large tunable negative lateral shift from graphene-based hyperbolic metamaterials backed by a dielectric. Superlattices Microstruct. 120, 1–6 (2018)

    Article  ADS  Google Scholar 

  10. Y. Kang, P. Gao, H. Liu et al., Large tunable lateral shift from guided wave surface plasmon resonance. Plasmonics 24, 1–5 (2019)

    Google Scholar 

  11. Y. Song, H.-C. Wu, Y. Guo, Giant Goos–Hänchen shift in graphene double-barrier structures. Appl. Phys. Lett. 100(25), 116 (2012)

    Google Scholar 

  12. P.T. Leung, C.W. Chen, H.P. Chiang, Large negative Goos–Hänchen shift at metal surfaces. Opt Commun 276(2), 206–208 (2007)

    Article  ADS  Google Scholar 

  13. T.M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.I. Wu, J.A. Kong, Reflection coefficients and Goos–Hänchen shifts in anisotropic and bianisotropic left-handed metamaterials. Progr. Electromagn. Res. 51, 83–113 (2005)

    Article  Google Scholar 

  14. X. Liu, Z. Cao, P. Zhu, Q. Shen, X. Liu, Large positive and negative lateral optical beam shift in prism-waveguide coupling system. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 73(2), 056617 (2006)

    Article  ADS  Google Scholar 

  15. H.F. Wang, Z.X. Zhou, H. Tian, D.J. Liu, Y. Shen, Q, Electric control of enhanced lateral shift owning to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal. J. Opt. 12, 045708 (2010)

    Article  ADS  Google Scholar 

  16. A. Farmani, M. Mehdi, M.H. Sheikhi, Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. J. Opt. Soc. Am. B 34(6), 1097 (2017)

    Article  ADS  Google Scholar 

  17. A. Farmani, M. Miri, M.H. Sheikhi, Design of a high extinction ratio tunable graphene on white graphene polarizer. IEEE Photonics Technol. Lett. 30(2), 153–156 (2018)

    Article  ADS  Google Scholar 

  18. M.A. Baqir, A. Farmani, T. Fatima, M.R. Raza, S.F. Shaukat, A. Mir, Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57(31), 9447 (2018)

    Article  ADS  Google Scholar 

  19. A. Farmani, A. Mir, Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol. Lett. 31(8), 643–646 (2019)

    Article  ADS  Google Scholar 

  20. A. Farmani, Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J. Opt. Soc. Am. B 36(2), 401 (2019)

    Article  ADS  Google Scholar 

  21. C. Luo, J. Guo, Q. Wang, Y. Xiang, Electrically controlled Goos–Hänchen shift of a light beam reflected from the metal–insulator–semiconductor structure. Opt. Express 21, 910430–910439 (2013)

    Google Scholar 

  22. M. Fu, Y. Zhang, J. Wu, X. Dai, Y. Xiang, Large and negative Goos–hänchen shift with magneto-controllability based on a ferrofluid. J. Opt. 15(3), 5103 (2013)

    Article  Google Scholar 

  23. Y.Q. Kang, Y. Xiang, C. Luo, Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials. Appl. Phys. B 124(6), 115 (2018)

    Article  ADS  Google Scholar 

  24. Y. Wang, Z. Cao, H. Li, J. Hao, T. Yu, Q. Shen, Electric control of spatial beam position based on the Goos–Hänchen effect. Appl. Phys. Lett. 93(9), 333 (2008)

    Google Scholar 

  25. M. Merano, A. Aiello, M.P.V. Exter, J.P. Woerdman, Observing angular deviations in the specular reflection of a light beam. Nat. Photonics 3(3), 337–340 (2009)

    Article  ADS  Google Scholar 

  26. M.A. Porras, Moment-method evaluation of the angular and lateral shifts of reflected light beams. Opt. Commun. 131(1), 13–20 (1996)

    Article  ADS  Google Scholar 

  27. M. Sato, H. Sasada, Measurements of transverse lateral and longitudinal angular shifts of high-azimuthal-mode laguerre-gaussian beams reflected at a dielectric interface near critical incidence. J. Opt. 15(1), 4018 (2013)

    Article  ADS  Google Scholar 

  28. G. Sui, L. Cheng, L. Chen, Large positive and negative lateral optical beam shift due to long-range surface plasmon resonance. Opt. Commun. 284(6), 1553–1556 (2011)

    Article  ADS  Google Scholar 

  29. C.F. Li, H. Zhou, P. Hou, X. Chen, Giant bistable lateral shift owing to surface-plasmon excitation in kretschmann configuration with a kerr nonlinear dielectric. Opt. Lett. 33(11), 1249–1251 (2008)

    Article  ADS  Google Scholar 

  30. Y.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii, Y.P. Lee, T. Rasing, Effect of lateral shift of the light transmitted through a one-dimensional superconducting photonic crystal. Photonics Nanostruct. Fundam. Appl. 11(4), 345–352 (2013)

    Article  ADS  Google Scholar 

  31. Y.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii, Y.P. Lee, Goos–hänchen shift at the reflection of light from the complex structures composed of superconducting and dielectric layers. J. Appl. Phys. 118(21), 333–15934 (2015)

    Article  Google Scholar 

  32. H. Rauh, Y.A. Genenko, The effect of a superconducting surface layer on the optical properties of a dielectric photonic composite. J. Phys. Condens. Matter 20(14), 145203 (2008)

    Article  ADS  Google Scholar 

  33. S.M. Meenehan, J.D. Cohen, S. Gröblacher, J.T. Hill, A.H. Safavi-Naeini, M. Aspelmeyer et al., Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90(1), 4804–4810 (2014)

    Article  Google Scholar 

  34. R. Beyer, M. Dressel, Piston pressure cell for low-temperature infrared investigations. Rev. Sci. Instrum. 86(5), 012208 (2015)

    Article  Google Scholar 

  35. B. Zhao, L. Gao, Temperature-dependent Goos–Hänchen shift on the interface of metal/dielectric composites. Opt. Express 17(24), 21433–21441 (2009)

    Article  ADS  Google Scholar 

  36. C. Min, F. Ping, X. Chen, X. Zeng, S. Feng, C. Rong, Giant and tunable goos–hanchen shifts for attenuated total reflection structure containing graphene. J. Opt. Soc. Am. B 31(10), 2325–2329 (2014)

    Article  ADS  Google Scholar 

  37. L.R.K. Ziauddin, S. Qamar, Control of goos–hänchen shift via input probe field intensity. Opt. Commun. 379, 68–73 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by National Science Foundation for China (Grant nos. 61605098, 11664004, 11874245) and Launching Funds for Doctors of Shanxi Datong University (Grant no. 2014-B-04) and Shanxi Provincial Natural Science Foundation (Grant nos. 201801D121071, 201701D221096) and Foundation of Education Bureau of Hunan Province, China (Grant no. 19A067) and Scientific and Technological Innovation Project of Colleges in Shanxi Province (Grant no. 2019L0741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyou Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Feng, C. & Luo, C. Large tunable lateral shift in prism coupling system containing a superconducting slab. Appl. Phys. B 126, 108 (2020). https://doi.org/10.1007/s00340-020-07463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07463-y

Navigation