Skip to main content
Log in

A Parabolic Equation for the Fractional Laplacian in the Entire Space: Blow-Up of Nonnegative Solutions

  • Published:
Ukrainian Mathematical Journal Aims and scope

The main aim of the present paper is to investigate the conditions under which the nonnegative solutions blow-up for the parabolic problem \( \frac{\partial u}{\partial t}=-{\left(-\Delta \right)}^{\frac{\alpha }{2}}u+\frac{c}{{\left|x\right|}^{\alpha }}u\kern1em \mathrm{in}\kern1em {\mathrm{\mathbb{R}}}^{\mathrm{d}}\times \left(0,T\right), \) where 0 < α < min(2, d), \( {\left(-\Delta \right)}^{\frac{\alpha }{2}} \)is the fractional Laplacian on ℝd and the initial condition u0 is in L2(ℝd).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Ben Amor and T. Kenzizi, “The heat equation for the Dirichlet fractional Laplacian with negative potentials: existence and blow-up of nonnegative solutions,” Acta Math. Sinica (Engl. Ser.) (2017).

  2. K. Bogdan and T. Byczkowski, “Potential theory for the -stable Schr¨odinger operator on bounded Lipschitz domains,” Stud. Math., 133, No. 1, 53–92 (1999).

    Article  Google Scholar 

  3. K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, and Z. Vondraˇcek, “Potential analysis of stable processes and its extensions,” Lect. Notes Math., 1980 (2009).

  4. P. Baras and J. A. Goldstein, “The heat equation with a singular potential,” Trans. Amer. Math. Soc., 284, No. 1, 121–139 (1984).

    Article  MathSciNet  Google Scholar 

  5. P. Baras and J. A. Goldstein, “Remarks on the inverse square potential in quantum mechanics,” North-Holland Math. Stud., 92, 31–35 (1984).

    Article  MathSciNet  Google Scholar 

  6. R. Blumenthal and R. Getoor, “The asymptotic distribution of the eigenvalues for a class of Markov operators,” Pacific J. Math., 9, 399–408 (1959).

    Article  MathSciNet  Google Scholar 

  7. C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, New York (1975).

    Book  Google Scholar 

  8. R. Bannuelos and T. Kulczycki, “Trace estimates for stable processes,” Probab. Theory Related Fields, 142, 313–338 (2008).

    Article  MathSciNet  Google Scholar 

  9. Z. Q. Chen, P. Kim, and R. Song, “Heat kernel estimates for the Dirichlet fractional Laplacian,” J. Europ. Math. Soc., 12, 1307–1329 (2010).

    Article  MathSciNet  Google Scholar 

  10. X. Cabré and Y. Martel, “Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier,” C. R. Math. Acad. Sci. Paris, 329, No. 11, 973–978 (1999).

    Article  MathSciNet  Google Scholar 

  11. Z. Q. Chen and T. Kumagai, “Heat kernel estimates for stable-like processes on d-sets,” Stochastic Process. Appl., 108, 27–62 (2003).

    Article  MathSciNet  Google Scholar 

  12. E. B. Davies, Spectral Theory and Differential Operators, Cambridge Univ. Press, Cambridge (1995).

    Book  Google Scholar 

  13. E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge (1989).

    Book  Google Scholar 

  14. J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer, New York (1983).

    MATH  Google Scholar 

  15. M. Fukushima, Y. Oshima, and M. Takeda, “Dirichlet forms and symmetric Markov processes,” De Gruyter Stud. Math., 19, 489 (2011).

    MathSciNet  MATH  Google Scholar 

  16. J. A. Goldstein and Q. S. Zhang, “On a degenerate heat equation with a singular potential,” J. Funct. Anal., 186, 342–359 (2001).

    Article  MathSciNet  Google Scholar 

  17. T. Kenzizi, “Existence of nonnegative solutions for a fractional parabolic equation in the whole space,” Ukr. Math. J., 71, No. 8, 1064–1072 (2019).

    MathSciNet  Google Scholar 

  18. M. Kwa´snicki, “Ten equivalent definitions of the fractional Laplace operator,” arXiv: 1507.07356v2[math.AP], 14 September (2015).

  19. K. Kaleta and T. Kulczycki, “Intrinsic ultracontractivity for Schr¨odinger operators based on fractional Laplacians,” Potential Anal., 33, No. 4, 313–339 (2010).

    Article  MathSciNet  Google Scholar 

  20. M. Bonforte, G. Grillo, and J. L. Vazquez, “Quantitative local bounds for subcritical semilinear elliptic equations,” Milan J. Math., 80, 65–118 (2012).

    Article  MathSciNet  Google Scholar 

  21. H. Park and R. Song, “Trace estimates for relativistic stable processes,” Potential Anal., 41, 1273–1291 (2014).

    Article  MathSciNet  Google Scholar 

  22. G. F. Roach, Green’s Functions: Introductory Theory with Applications, Van Nostrand (1970).

  23. L. Silvestre, “Regularity of the obstacle problem for a fractional power of the Laplace operator,” Comm. Pure Appl. Math., 60, No. 1, 67–112 (2007).

    Article  MathSciNet  Google Scholar 

  24. K. Yosida, “Functional analysis,” Classics in Mathematics, Springer-Verlag, Berlin; Heidelberg (1995).

  25. V. M. Zolotarev, One-Dimensional Stable Distributions, Nauka, Moscow (1983).

    MATH  Google Scholar 

  26. H. Weyl, “U¨ ber beschra¨nkte quadratische Formen, deren differenz vollstetig ist,” Rend. Circ. Mat. Palermo (2), 27, 373–392 (1909).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kenzizi.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 11, pp. 1502–1518, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenzizi, T. A Parabolic Equation for the Fractional Laplacian in the Entire Space: Blow-Up of Nonnegative Solutions. Ukr Math J 71, 1719–1738 (2020). https://doi.org/10.1007/s11253-020-01743-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-020-01743-8

Navigation