Skip to main content
Log in

Tunable optical second-order sideband effects in a parity-time symmetric optomechanical system

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We theoretically investigate the optical second-order sideband generation (OSSG) in an optical parity-time (PT) symmetric system, which consists of a passive cavity trapping the atomic ensemble and an active cavity. Compared with the double-passive system, it is found that near the exceptional point (EP), the efficiency of the OSSG increases sharply not only for the blue probepump detuning resonant case but also for the red one. Using experimentally achievable parameters, we study the effect of the atomic ensemble on the efficiency of the OSSG in the PT-symmetric system. The numerical results show that the efficiency of the OSSG is 30% higher than that of the first-order sideband, which is realized easily by simultaneously modulating the atom-cavity coupling strength and detuning. Moreover, the efficiency of the OSSG can also be tuned effectively by the pump power, and the efficiency is robust when the pump power is strong enough. This study may have some guidance for modulating the nonlinear optical properties and controlling light propagation, which may stimulate further applications in optical communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014), arXiv: 1303.0733.

    ADS  Google Scholar 

  2. T. J. Kippenberg, and K. J. Vahala, Science 321, 1172 (2008).

    ADS  Google Scholar 

  3. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, Nature 482, 63 (2012), arXiv: 1107.3761.

    ADS  Google Scholar 

  4. L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, Nat. Commun. 6, 5850 (2015), arXiv: 1412.2084.

    ADS  Google Scholar 

  5. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawa-mura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, Science 256, 325 (1992).

    ADS  Google Scholar 

  6. P. Rabl, Phys. Rev. Lett. 107, 063601 (2011), arXiv: 1102.0278.

    ADS  Google Scholar 

  7. R. Huang, A. Miranowicz, J. Q. Liao, F. Nori, and H. Jing, Phys. Rev. Lett. 121, 153601 (2018), arXiv: 1807.10084.

    ADS  Google Scholar 

  8. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, Nat. Photon. 6, 768 (2012), arXiv: 1203.5730.

    ADS  Google Scholar 

  9. J. Liu, and K.-D. Zhu, Photon. Res. 6, 867 (2018).

    Google Scholar 

  10. Q. Wang, J. Q. Zhang, P. C. Ma, C. M. Yao, and M. Feng, Phys. Rev. A 91, 063827 (2015), arXiv: 1506.00812.

    ADS  Google Scholar 

  11. F. C. Lei, M. Gao, C. Du, Q. L. Jing, and G. L. Long, Opt. Express 23, 11508 (2015).

    ADS  Google Scholar 

  12. X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, Phys. Rev. A 98, 033832 (2018).

    ADS  Google Scholar 

  13. W. Nie, A. Chen, and Y. Lan, Opt. Express 25, 32931 (2017).

    ADS  Google Scholar 

  14. B. P. Hou, L. F. Wei, and S. J. Wang, Phys. Rev. A 92, 033829 (2015).

    ADS  Google Scholar 

  15. Y. Guo, K. Li, W. Nie, and Y. Li, Phys. Rev. A 90, 053841 (2014), arXiv: 1407.5202.

    ADS  Google Scholar 

  16. Z. X. Liu, B. Wang, H. Xiong, and Y. Wu, Opt. Lett. 43, 3698 (2018), arXiv: 1806.08289.

    ADS  Google Scholar 

  17. C. Cao, S. C. Mi, Y. P. Gao, L. Y. He, D. Yang, T. J. Wang, R. Zhang, and C. Wang, Sci. Rep. 6, 22920 (2016).

    ADS  Google Scholar 

  18. H. Xiong, L. G. Si, X. Y. Lü, X. Yang, and Y. Wu, Opt. Lett. 38, 353 (2013).

    ADS  Google Scholar 

  19. J. Li, J. Li, Q. Xiao, and Y. Wu, Phys. Rev. A 93, 063814 (2016).

    ADS  Google Scholar 

  20. L. Li, W. X. Yang, Y. Zhang, T. Shui, A. X. Chen, and Z. Jiang, Phys. Rev. A 98, 063840 (2018).

    ADS  Google Scholar 

  21. L. Y. He, Phys. Rev. A 99, 033843 (2019).

    ADS  Google Scholar 

  22. B. Chen, L. Shang, X. F. Wang, J. B. Chen, H. B. Xue, X. Liu, and J. Zhang, Phys. Rev. A 99, 063810 (2019).

    ADS  Google Scholar 

  23. H. Xiong, and Y. Wu, Appl. Phys. Rev. 5, 031305 (2018).

    ADS  Google Scholar 

  24. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118 (1961).

    ADS  Google Scholar 

  25. W. X. Yang, A. X. Chen, X. T. Xie, and L. Ni, Phys. Rev. A 96, 013802 (2017).

    ADS  Google Scholar 

  26. Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005), arXiv: quant-ph/0501002.

    ADS  Google Scholar 

  27. K. J. Vahala, Nature 424, 839 (2003).

    ADS  Google Scholar 

  28. Z. Z. Hao, L. Zhang, A. Gao, W. B. Mao, X. D. Lyu, X. M. Gao, F. Bo, F. Gao, G. Q. Zhang, and J. J. Xu, Sci. China-Phys. Mech. Astron. 61, 114211 (2018).

    ADS  Google Scholar 

  29. Q. H. Song, Sci. China-Phys. Mech. Astron. 62, 074231 (2019).

    Google Scholar 

  30. C. M. Bender, and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998), arXiv: physics/9712001.

    MathSciNet  ADS  Google Scholar 

  31. C. M. Bender, Rep. Prog. Phys. 70, 947 (2007), arXiv: hep-th/0703096.

    ADS  Google Scholar 

  32. A. Mostafazadeh, J. Math. Phys. 43, 205 (2002), arXiv: math-ph/0107001.

    MathSciNet  ADS  Google Scholar 

  33. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Phys. Rev. Lett. 106, 213901 (2011), arXiv: 1108.2493.

    ADS  Google Scholar 

  34. H. F. Jones, J. Phys. A-Math. Theor. 45, 135306 (2012), arXiv: 1111.2041.

    ADS  Google Scholar 

  35. H. Benisty, A. Degiron, A. Lupu, A. de Lustrac, S. Chénais, S. Forget, M. Besbes, G. Barbillon, A. Bruyant, S. Blaize, and G. Lérondel, Opt. Express 19, 18004 (2011).

    ADS  Google Scholar 

  36. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).

    Google Scholar 

  37. S. Bittner, B. Dietz, U. Günther, H. L. Harney, M. Miski-Oglu, A. Richter, and F. Schäfer, Phys. Rev. Lett. 108, 024101 (2012), arXiv: 1107.4256.

    ADS  Google Scholar 

  38. A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Nature 488, 167 (2012).

    ADS  Google Scholar 

  39. B. Peng, K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014), arXiv: 1308.4564.

    Google Scholar 

  40. L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, Science 333, 729 (2011).

    ADS  Google Scholar 

  41. X. Y. Lü, H. Jing, J. Y. Ma, and Y. Wu, Phys. Rev. Lett. 114, 253601 (2015), arXiv: 1506.08917.

    ADS  Google Scholar 

  42. H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, Phys. Rev. Lett. 113, 053604 (2014), arXiv: 1403.0657.

    ADS  Google Scholar 

  43. J. Li, X. Zhan, C. Ding, D. Zhang, and Y. Wu, Phys. Rev. A 92, 043830 (2015).

    ADS  Google Scholar 

  44. R. W. Boyd, Nonlinear Optics (Elsevier, New York, 2003).

    Google Scholar 

  45. Y. F. Jiao, T. X. Lu, and H. Jing, Phys. Rev. A 97, 013843 (2018), arXiv: 1801.08669.

    ADS  Google Scholar 

  46. C. Jiang, X. Bian, Y. Cui, and G. Chen, J. Opt. Soc. Am. B 33, 2099 (2016).

    ADS  Google Scholar 

  47. S. Liu, W. X. Yang, Z. Zhu, T. Shui, and L. Li, Opt. Lett. 43, 9 (2018).

    ADS  Google Scholar 

  48. S. Weis, R. Riviére, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Science 330, 1520 (2010), arXiv: 1007.0565.

    ADS  Google Scholar 

  49. H. Xiong, L. G. Si, A. S. Zheng, X. Yang, and Y. Wu, Phys. Rev. A 86, 013815 (2012).

    ADS  Google Scholar 

  50. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, Nature 444, 67 (2006), arXiv: quant-ph/0607068.

    ADS  Google Scholar 

  51. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Nature 444, 71 (2006), arXiv: quant-ph/0607205.

    ADS  Google Scholar 

  52. C. Genes, D. Vitali, and P. Tombesi, Phys. Rev. A 77, 050307 (2008), arXiv: 0801.2266.

    ADS  Google Scholar 

  53. Z. P. Liu, J. Zhang, K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. Liu, Phys. Rev. Lett. 117, 110802 (2016), arXiv: 1510.05249.

    ADS  Google Scholar 

  54. J. Zhang, B. Peng, K. Özdemir, Y. Liu, H. Jing, X. Lü, Y. Liu, L. Yang, and F. Nori, Phys. Rev. B 92, 115407 (2015), arXiv: 1510.07343.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to QingHong Liao or YongChun Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61368002, 91736106, 11674390, and 91836302), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201711), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), and the Graduate Innovation Special Fund of Jiangxi Province (Grant No. YC2019-S102).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Liao, Q., Zhou, N. et al. Tunable optical second-order sideband effects in a parity-time symmetric optomechanical system. Sci. China Phys. Mech. Astron. 63, 114211 (2020). https://doi.org/10.1007/s11433-020-1559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1559-4

Keywords

PACS number(s)

Navigation