Skip to main content

Advertisement

Log in

Sintering behavior and thermal conductivity of Y2O3 fully stabilized HfO2 ceramics

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A series of Y2O3 fully stabilized HfO2 ceramics (Hf1−xYxO20.5x, x = 0.20, 0.24, 0.28, 0.32, 0.36 and 0.40) were synthesized by solid-state reaction at 1500 °C. The phase composition, thermal conductivity and sintering behavior at 1400 °C of the ceramic bulks were studied. The Hf1−xYxO20.5x ceramics were comprised of pure cubic phase with disordered fluorite structure. No phase transformation occurred in the ceramics with Y3+ doping concentration ranging from 0.24 to 0.36. Both Hf0.64Y0.36O1.82 and Hf0.6Y0.4O1.8 samples revealed the lowest grain growth rate when sintered at 1400 °C, indicating good resistance to sintering. However, the Vicker’s hardness and Young’s modulus after annealed for 96 h at 1400 °C for the Hf0.64Y0.36O1.82 sample were 8.97 and 200 GPa, respectively, much lower than those of the Hf0.6Y0.4O1.8 (14.51 and 237 GPa, respectively). The thermal conductivity of Hf1−xYxO20.5x first decreased and then increased slowly as the Y3+ content increased, and the associated mechanism was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Miller RA. Thermal barrier coatings for aircraft engines: history and directions. J Therm Spray Technol. 1997;6(1):35.

    Article  CAS  Google Scholar 

  2. Feng B, Wang Y, Jia Q, Huang W, Suo H, Ma W. Thermophysical properties of solution precursor plasma-sprayed La2Ce2O7 thermal barrier coatings. Rare Met. 2019;38(7):689.

    Article  CAS  Google Scholar 

  3. Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296(5566):280.

    Article  CAS  Google Scholar 

  4. Liu M, Zhang G, Lu Y, Han J, Li G, Li C, Li C, Yang G. Plasma spray–physical vapor deposition toward advanced thermal barrier coatings: a review. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01351-x.

    Article  Google Scholar 

  5. Miller RA, Lowell CE. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures. Thin Solid Films. 1982;95(3):265.

    Article  CAS  Google Scholar 

  6. Schlichting KW, Padture NP, Jordan EH, Gell M. Failure modes in plasma-sprayed thermal barrier coatings. Mater Sci Eng A. 2003;342(1–2):120.

    Article  Google Scholar 

  7. Trice RW, Su YJ, Mawdsley JR, Faber KT, Arellano-López ARD, Wang H, Porter WD. Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ. J Mater Sci. 2002;37(11):2359.

    Article  CAS  Google Scholar 

  8. Wang J, Li H, Stevens R. Hafnia and hafnia-toughened ceramics. J Mater Sci. 1992;27(20):5397.

    Article  CAS  Google Scholar 

  9. Tang J, Zhang F, Zoogman P, Fabbri J, Chan SW, Zhu Y, Brus LE, Steigerwald ML. Martensitic phase transformation of isolated HfO2, ZrO2, and HfxZr1−xO2 (0<x<1) nanocrystals. Adv Funct Mater. 2010;15(10):1595.

    Article  Google Scholar 

  10. Andrievskaya ER. Phase transformations in the ternary systems ZrO2 (HfO2)–Y2O3–Eu2O3 at 1250 °C. In: 7th Conference of the European-Ceramic-Society Brugge. Belgium: Key Eng Mater Trans Tech Publ. 2002;206:719.

  11. Matsumoto K, Itoh Y, Kameda T. EB-PVD process and thermal properties of hafnia-based thermal barrier coating. Sci Technol Adv Mater. 2003;4(2):153.

    Article  CAS  Google Scholar 

  12. Dongming Zhu RAM. Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coatings. Surf Coat Technol. 1998;108(1–3):114.

    Google Scholar 

  13. Zhu D, Miller RA. Hafnia-based materials developed for advanced thermal/environmental barrier coating applications. 2004. https://ntrs.nasa.gov/search.jsp?R=20050192261.

  14. Li C, Ma Y, Xue Z, Yang Y, Chen J, Guo H. Effect of Y doping on microstructure and thermophysical properties of yttria stabilized hafnia ceramics. Ceram Int. 2018;44(15):18213.

    Article  CAS  Google Scholar 

  15. Dole SL, Hunter OJ, Wooge CJ. Elastic properties of monoclinic hafnium oxide at room temperature. J Am Ceram Soc. 1977;60(11–12):488.

    Article  CAS  Google Scholar 

  16. Ibegazene H, Alperine S, Diot C. Yttria-stabilized hafnia-zirconia thermal barrier coat. J Mater Sci. 1995;30(4):938.

    Article  CAS  Google Scholar 

  17. Wang Y, Duncan K, Wachsman ED, Ebrahimi F. The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides. Solid State Ion. 2007;178(1–2):53.

    Article  CAS  Google Scholar 

  18. Chen PL, Chen IW. Grain growth in CeO2: dopant effects, defect mechanism, and solute drag. J Am Ceram Soc. 2010;79(7):1793.

    Article  Google Scholar 

  19. Wang CC, Lei CM, Wang GJ, Sun XH, Li T, Huang SG, Wang H, Li YD. Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures. J Appl Phys. 2013;113(9):392.

    Article  Google Scholar 

  20. Vigreux C, Deneuve B, Fallah JE, Haussonne JM. Effects of acceptor and donor additives on the properties of MgTiO3 ceramics sintered under reducing atmosphere. J Eur Ceram Soc. 2001;21(10):1681.

    Article  CAS  Google Scholar 

  21. Guo X, Waser R. Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci. 2006;51(2):151.

    Article  CAS  Google Scholar 

  22. Khan MS, Islam MS, Bates DR. Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study. J Mater Chem. 1998;8(10):2299.

    Article  CAS  Google Scholar 

  23. Zacate MO, Minervini L, Bradfield DJ, Grimes RW, Sickafus KE. Defect cluster formation in M2O3-doped cubic ZrO2. Solid State Ion. 2000;128(1):243.

    Article  CAS  Google Scholar 

  24. Subramanian R. Highly defective oxides as sinter resistant thermal barrier coating. U.S. Patent 6,930,066. 2005.

  25. Siebert B, Funke C, Vaβen R, Stöver D. Changes in porosity and Young’s modulus due to sintering of plasma sprayed thermal barrier coatings. J Mater Process Technol. 1999;92:217.

    Article  Google Scholar 

  26. Zhang QC, Ma D. Acoustic measurement of elastic constant for ceramic materials. J Inorg Mater. 1989;4(4):010.

    Google Scholar 

  27. Ye DL, Hu JH. Manual of practical inorganic matter thermodynamics. Beijing: Metallurgical Industry Press; 2002. 443.

    Google Scholar 

  28. Asmani M, Kermel C, Leriche A, Ourak M. Influence of porosity on Young's modulus and Poisson's ratio in alumina ceramics. J Eur Ceram Soc. 2001;21(8):1081.

    Article  CAS  Google Scholar 

  29. Subramanian MA, Aravamudan G, Rao GVS. Oxide pyrochlores—a review. Prog Solid State Chem. 1983;15(2):55.

    Article  CAS  Google Scholar 

  30. Scheetz BE, White WB. ChemInform abstract: characterization of anion disorder in zirconate A2B2O7 compounds by Raman spectroscopy. J Am Ceram Soc. 1980;11(4):468.

    Google Scholar 

  31. Goff JP, Hayes W, Hull S, Hutchings MT, Clausen KN. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys Rev B Condens Matter. 1999;59(22):14202.

    Article  CAS  Google Scholar 

  32. Spiridonov FN, Komissarova LN, Kogarov LG, Spitsin VN. System HfO2–Y2O3. Zh Neorg Khim. 1969;14(9):2535.

    CAS  Google Scholar 

  33. Schulz U, Saruhan B, Fritscher K, Leyens C. Review on advanced EB-PVD ceramic topcoats for tbc applications. Int J Appl Ceram Technol. 2010;1(4):302.

    Article  Google Scholar 

  34. Li W, Zhao H, Zhong X, Wang L, Tao S. Air plasma-sprayed yttria and yttria-stabilized zirconia thermal barrier coatings subjected to calcium-magnesium-alumino-silicate (CMAS). J Therm Spray Technol. 2014;23(6):975.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially sponsored by the National Natural Science Foundation of China (Nos. U1537212 and 51471019), China Postdoctoral Science Foundation (Nos. 2017T100023 and 2016M600028) and the National Key Research and Development Program of China (No. 2016YFB0300901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., He, J. & Ma, Y. Sintering behavior and thermal conductivity of Y2O3 fully stabilized HfO2 ceramics. Rare Met. 40, 1255–1266 (2021). https://doi.org/10.1007/s12598-020-01421-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01421-5

Keywords

Navigation