Skip to main content
Log in

Evolution of internal solitary waves on the slope-shelf topography in the northern South China Sea

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Based on a non-hydrostatic two-dimensional and high-resolution model, evolution of internal solitary waves (ISWs) on the typical slope-shelf topography in the northern South China Sea is investigated numerically, and the influences of the initial amplitude, seasonal stratification and topographic characteristics are analyzed with a series of sensitivity runs. The results indicate that the initial amplitude affects the fission of ISW, resulting in three wave groups for large ISW and two wave groups for small ISW. In addition, the generation of mode-2 waves is influenced since energetic beams are engendered by large initial ISW, which impact the pycnocline and generate the mode-2 ISWs. Seasonal stratification has significant impacts on the evolution of the ISW. In winter, the changing sign of the nonlinearity coefficient at the bump near the shelf break implies the inversion of polarity of the ISW. Therefore, the transmitted and fissioned waves behave differently from those in summer and annual stratifications. Furthermore, the speed and energy of the leading wave are minimal in winter but maximal in summer. The bump near the continental shelf has two impacts: promoting the fission of the incident ISW and generating mode-2 ISWs by increasing the Ursell number (the ratio of nonlinear coefficient to dispersion coefficient). However, the formation of the trailing nonlinear wave packet is not affected by these factors, despite of some differences in waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alford MH, Lien R-C, Simmons H, Klymak J, Ramp S, Yang YJ, Tang D, Chang MH (2010) Speed and evolution of nonlinear internal waves transiting the South China Sea. J Phys Oceanogr 40(6):1338–1355

    Article  Google Scholar 

  • Alford MH, MacKinnon JA, Nash JD, Coauthors (2011) Energy flux and dissipation in Luzon Strait: two tales of two ridges. J Phys Oceanogr 41:2211–2222

    Article  Google Scholar 

  • Alford MH, Peacock T, Mackinnon JA, Coauthors (2015) The formation and fate of internal waves in the South China Sea. Nature 521:65–69

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Tech Memo NESDIS NGDC-24:25 pp

  • Bai X, Li X, Lamb KG, Hu J (2017) Internal solitary wave reflection near Dongsha Atoll, the South China Sea. J Geophys Res Oceans 122:7978–7991

    Article  Google Scholar 

  • Bai X, Liu Z, Zheng Q, Hu J, Lamb KG, Cai S (2019) Fission of shoaling internal waves on the northeastern shelf of the South China Sea. J Geophys Res Oceans 124(7):4529–4545

    Google Scholar 

  • Buijsman MC, Kanarska Y, Mcwilliams JC (2010a) On the generation and evolution of nonlinear internal waves in the South China Sea. J Geophys Res Oceans 115(C02012). https://doi.org/10.1029/2009JC005275

  • Buijsman MC, Mcwilliams JC, Jackson CR (2010b) East-west asymmetry in nonlinear internal waves from Luzon strait. J Geophys Res Oceans 115(C10057). https://doi.org/10.1029/2009JC006004

  • Cai S, Long X, Wang S (2008) Forces and torques exerted by internal solitons in shear flows on cylindrical piles. Appl Ocean Res 30(1):72–77

    Article  Google Scholar 

  • Cai S, Xie J, He J (2012) An overview of internal solitary waves in the South China Sea. Surv Geophys 33(5):927–943

    Article  Google Scholar 

  • Cao A, Guo Z, Lv X, Song J, Zhang J (2017) Coherent and incoherent features, seasonal behaviors and spatial variations of internal tides in the northern South China Sea. J Mar Syst 172:75–83

    Article  Google Scholar 

  • Cao A, Guo Z, Song J, Lv X, He H, Fan W (2018) Near-inertial waves and their underlying mechanisms based on the South China Sea Internal Wave Experiment (2010–2011). J Geophys Res Oceans 123(7):5026–5040

    Google Scholar 

  • Chen G, Hou Y, Chu X (2011) Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure. J Geophys Res 116(C06018). https://doi.org/10.1029/2010JC006716

  • Chen L, Zheng Q, Xiong X, Yuan Y, Xie H, Guo Y et al (2019) Dynamic and statistical features of internal solitary waves on the continental slope in the northern South China Sea derived from mooring observations. J Geophys Res Oceans 124(6):4078–4097

    Google Scholar 

  • Dong J, Zhao W, Chen H, Meng Z, Shi X, Tian J (2015) Asymmetry of IWs and its effects on the ecological environment observed in the northern South China Sea. Deep-Sea Res I 98:94–101

    Article  Google Scholar 

  • Dunphy M, Subich C, Stastna M (2011) Spectral methods for internal waves: indistinguishable density profiles and double-humped solitary waves. Nonlinear Process Geophys 18(3):351–358

    Article  Google Scholar 

  • Farmer DM, Alford MH, Lien R-C, Yang YJ, Chang M-H, Li Q (2011) From Luzon Strait to Dongsha Plateau: stages in the life of an internal wave. Oceanography 24(4):64–77

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics (662. pp.). Academic Press, New York

    Google Scholar 

  • Grimshaw R, Guo C, Helfrich K, Vlasenko V (2014) Combined effect of rotation and topography on shoaling oceanic internal solitary waves. J Phys Oceanogr 44(4):1116–1132

    Article  Google Scholar 

  • Guan S, Zhao W, Huthnance J, Tian J, Wang J (2014) Observed upper ocean response to typhoon Megi (2010) in the northern South China Sea. J Geophys Res Oceans 119(5):3134–3157

    Article  Google Scholar 

  • Guo C, Chen X (2012) Numerical investigation of large amplitude second mode internal solitary waves over a slope-shelf topography. Ocean Model 42(1):80–91

    Article  Google Scholar 

  • Guo C, Chen X (2014) A review of internal solitary wave dynamics in the northern South China Sea. Prog Oceanogr 121:7–23

    Article  Google Scholar 

  • Guo C, Chen X, Vlasenko V, Stashchuk N (2011) Numerical investigation of internal solitary waves from the Luzon strait: generation process, mechanism and three-dimensional effects. Ocean Model 38(3):203–216

    Article  Google Scholar 

  • Holloway P, Pelinovsky E (2002) Internal tide transformation and oceanic internal solitary waves. In: Grimshaw R (ed) Environmental stratified flows. Kluwer Acad, Boston, pp 29–60

    Google Scholar 

  • Huang X, Zhao W, Tian J, Yang Q (2014) Mooring observations of internal solitary waves in the deep basin west of Luzon strait. Acta Oceanol Sin 33(3):82–89

    Article  Google Scholar 

  • Huang X, Chen Z, Zhao W, Zhang Z, Zhou C, Yang Q, Tian J (2016) An extreme internal solitary wave event observed in the northern South China Sea. Sci Rep 6(1):30041

    Article  Google Scholar 

  • Kang D, Fringer O (2010) On the calculation of available potential energy in internal wave fields. J Phys Oceanogr 40(11):2539–2545

    Article  Google Scholar 

  • Klymak JM, Pinkel R, Liu C, Liu A, David L (2006) Prototypical solitons in the South China Sea. Geophys Res Lett 33:L11607

    Article  Google Scholar 

  • Lamb KG (2002) A numerical investigation of solitary internal waves with trapped cores formed via shoaling. J Fluid Mech 451:109–144

    Article  Google Scholar 

  • Lamb KG (2007) Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography. Cont Shelf Res 27(9):0–1232

    Article  Google Scholar 

  • Lamb KG (2008) On the calculation of the available potential energy of an isolated perturbation in a density-stratified fluid. J Fluid Mech 597:415–427

    Article  Google Scholar 

  • Lamb KG (2014) Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu Rev Fluid Mech 46(1):231–254

    Article  Google Scholar 

  • Lamb KG, Warn-Varnas A (2015) Two-dimensional numerical simulations of shoaling internal solitary waves at the ASIAEX site in the South China Sea. Nonlinear Process Geophys 22(3):289–312

    Article  Google Scholar 

  • Leith CE (1996) Stochastic models of chaotic systems. Phys D 98(2–4):481–491

    Article  Google Scholar 

  • Li Q (2014) Numerical assessment of factors affecting nonlinear internal waves in the South China Sea. Prog Oceanogr 121:24–43

    Article  Google Scholar 

  • Li Q, Farmer D (2011) The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. J Phys Oceanogr 41(7):1345–1363

    Article  Google Scholar 

  • Li D, Chen X, Liu A (2011) On the generation and evolution of internal solitary waves in the northwestern South China Sea. Ocean Model 40(2):105–119

    Article  Google Scholar 

  • Lien R-C, Henyey F, Ma B, Yang YJ (2014) Large-amplitude internal solitary waves observed in the northern South China Sea: properties and energetics. J Phys Oceanogr 44(4):1095–1115

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res Oceans 102(C3):5753–5766

    Article  Google Scholar 

  • Mercier MJ, Mathur M, Gostiaux L, Gerkema T, Magalhães JM, da Silva JCB, Dauxois T (2012) Soliton generation by internal tidal beams impinging on a pycnocline: laboratory experiments. J Fluid Mech 704:37–60

    Article  Google Scholar 

  • Min W, Li Q, Zhang P, Xu Z, Yin B (2019) Generation and evolution of internal solitary waves in the southern Taiwan Strait. Geophys Astrophys Fluid Dyn 113(3):287–302

    Article  Google Scholar 

  • Moum JN, Klymak JM, Nash JD, Perlin A, Smyth WD (2007) Energy transport by nonlinear internal waves. J Phys Oceanogr 37(7):1968–1988

    Article  Google Scholar 

  • Pacanowski RC, Philander SGH (1981) Parameterization of vertical mixing in numerical models of tropical oceans. J Phys Oceanogr 11(11):1443–1451

    Article  Google Scholar 

  • Pelinovsky EN, Slunyaev AV, Polukhina OE, Talipova TG (2007) Internal solitary waves. In: Grimshaw BR (ed) Book: solitary waves in fluids. WIT Press, Southampton, Boston, pp 85–110

    Chapter  Google Scholar 

  • Ramp SR, Tang TY, Duda TF, Lynch JF, Liu AK, Chiu C-S et al (2004) Internal solitons in the northeastern South China Sea. Part I: sources and deep water propagation. IEEE J Ocean Eng 29(4):1157–1181

    Article  Google Scholar 

  • Ramp SR, Yang YJ, Bahr FL (2010) Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Process Geophys 17(5):481–498

    Article  Google Scholar 

  • Ramp SR, Park J, Yang YJ, Bahr FL, Jeon C (2019) Latitudinal structure of solitons in the South China Sea. J Phys Oceanogr 49:1747–1767

    Article  Google Scholar 

  • Rayson MD, Jones NL, Ivey GN (2019) Observations of large-amplitude mode-2 nonlinear internal waves on the Australian North West shelf. J Phys Oceanogr 49:309–328

    Article  Google Scholar 

  • Simmons H, Chang M-H, Chang Y-T, Chao S-Y, Fringer O, Jackson CR, Ko DS (2011) Modeling and prediction of internal waves in the South China Sea. Oceanography 24(4):88–99

    Article  Google Scholar 

  • Su J (2004) Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the pearl river estuary. Cont Shelf Res 24(16):1745–1760

    Article  Google Scholar 

  • Vlasenko V, Alpers W (2005) Generation of secondary internal waves by the interaction of an internal solitary wave with an underwater bank. J Geophys Res 110(C2):C02019

    Article  Google Scholar 

  • Vlasenko V, Stashchuk N, Guo C, Chen X (2010) Multimodal structure of baroclinic tides in the South China Sea. Nonlinear Process Geophys 17:529–543

    Article  Google Scholar 

  • Vlasenko V, Guo C, Stashchuk N (2012) On the mechanism of a-type and b-type internal solitary wave generation in the northern South China Sea. Deep-Sea Res I Oceanogr Res Pap 69:100–112

    Article  Google Scholar 

  • Wang G, Xie S-P, Qu T, Huang RX (2011) Deep South China Sea circulation. Geophys Res Lett 38:L05601

    Google Scholar 

  • Xie J, He Y, Cai S (2019) Bumpy topographic effects on the transbasin evolution of large-amplitude internal solitary wave in the northern South China Sea. J Geophys Res Oceans 124(7):4677–4695

    Google Scholar 

  • Xu Z, Yin B, Yang H, Qi J (2012) Depression and elevation internal solitary waves in a two-layer fluid and their forces on cylindrical piles. Chin J Oceanol Limnol 30(4):703–712

    Article  Google Scholar 

  • Xu Z, Yin B, Hou Y, Liu AK (2014) Seasonal variability and north–south asymmetry of internal tides in the deep basin west of the Luzon strait. J Mar Syst 134:101–112

    Article  Google Scholar 

  • Xu Z, Liu K, Yin B, Zhao Z, Wang Y, Li Q (2016) Long-range propagation and associated variability of internal tides in the South China Sea. J Geophys Res 121:8268–8286

    Article  Google Scholar 

  • Yang YJ, Fang YC, Chang MH, Ramp SR, Kao CC, Tang TY (2009) Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea. J Geophys Res Oceans 114(C10003). https://doi.org/10.1029/2009JC005318

  • Zhang Z, Fringer OB, Ramp SR (2011) Three-dimensional, non-hydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. J Geophys Res Oceans 116:C05022

    Article  Google Scholar 

  • Zhang Z, Zhao W, Tian J, Liang X (2013) A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J Geophys Res Oceans 118(12):6479–6494

    Article  Google Scholar 

  • Zhang Z, Tian J, Qiu B, Zhao W, Chang P, Wu D et al (2016) Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci Rep 6:24349

    Article  Google Scholar 

  • Zhang P, Xu Z, Li Q, Yin B, Hou Y, Liu AK (2018) The evolution of mode-2 internal solitary waves modulated by background shear currents. Nonlinear Process Geophys 25:1–15

    Article  Google Scholar 

  • Zhao Z (2014) Internal tide radiation from the Luzon Strait. J Geophys Res Oceans 119:5434–5448

    Article  Google Scholar 

  • Zhao Z, Alford MH (2006) Source and propagation of internal solitary waves in the northeastern South China Sea. J Geophys Res Oceans 111. https://doi.org/10.1029/2006JC003644

  • Zhao Z, Klemas V, Zheng Q, Yan XH (2004) Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys Res Lett 31

    Article  Google Scholar 

  • Zhao Z, Liu B, Li X (2014) Internal solitary waves in the China seas observed using satellite remote-sensing techniques: a review and perspectives. Int J Remote Sens 35(11–12):3926–3946

    Article  Google Scholar 

  • Zheng Q, Klemas VV, Yan X-H, Pan J (2001) Nonlinear evolution of ocean internal solitons propagating along an inhomogeneous thermocline. J Geophys Res 106(C7):14,083–14,094

    Article  Google Scholar 

  • Zheng Q, Susanto RD, Ho C-R, Song YT, Xu Q (2007) Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. J Geophys Res 112:C03021

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Dunphy for sharing the MATLAB package solving the DJL equation. Valuable suggestions from the anonymous reviewer and editor are gratefully acknowledged, which lead to the improvement of this paper.

Funding

This study is supported by the National Key Research and Development Program of China through grant 2017YFA0604103 and the National Natural Science Foundation of China through grant 41876015. This study is also supported by Fund of Oceanic Telemetry Engineering and Technology Research Center, State Oceanic Administration, through grant 2017005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Li.

Additional information

Responsible Editor: Dirk Olbers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Meng, J., Li, Q. et al. Evolution of internal solitary waves on the slope-shelf topography in the northern South China Sea. Ocean Dynamics 70, 729–743 (2020). https://doi.org/10.1007/s10236-020-01357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01357-5

Keywords

Navigation