Skip to main content
Log in

Paired Immunoglobulin-like Receptor B Inhibition in Müller Cells Promotes Neurite Regeneration After Retinal Ganglion Cell Injury in vitro

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) have major inhibitory effects on nerve regeneration. They include Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. MAIs possess two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Previous studies have confirmed that the inhibition of NgR only results in a modest increase in regeneration in the CNS; however, the inhibitory effects of PirB with regard to nerve regeneration after binding to MAIs remain controversial. In this study, we demonstrated that PirB is expressed in primary cultures of retinal ganglion cells (RGCs), and the inhibitory effects of the three MAIs on the growth of RGC neurites are not significantly decreased after direct PirB knockdown using adenovirus PirB shRNA. Interestingly, we found that retinal Müller cells expressed PirB and that its knockdown enhanced the regeneration of co-cultured RGC neurites. PirB knockdown also activated the JAK/Stat3 signaling pathway in Müller cells and upregulated ciliary neurotrophic factor levels. These findings indicate that PirB plays a novel role in retinal Müller cells and that its action in these cells may indirectly affect the growth of RGC neurites. The results also reveal that PirB in Müller cells affects RGC neurite regeneration. Our findings provide a novel basis for the use of PirB as a target molecule to promote nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu-Wai-Man P, Votruba M, Burté F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropath 2016, 132: 789–806.

    Article  CAS  Google Scholar 

  2. Berry M, Ahmed Z, Lorber B, Douglas M, Logan A. Regeneration of axons in the visual system. Restor Neurol Neurosci 2008, 26: 147–174.

    PubMed  Google Scholar 

  3. Cafferty WB, Duffy P, Huebner E, Strittmatter SM. MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. J Neurosci 2010, 30: 6825–6837.

    Article  CAS  Google Scholar 

  4. Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 2002, 427: 941–944.

    Article  Google Scholar 

  5. Fournier AE, Grandpre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 2001, 409: 341–346.

    Article  CAS  Google Scholar 

  6. Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, et al. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 2002, 35: 283–290.

    Article  CAS  Google Scholar 

  7. Liu BP, Fournier A, Grandpré T, Strittmatter SM. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 2002, 297: 1190–1193.

    Article  CAS  Google Scholar 

  8. Atwal JK, Pinkstongosse J, Syken J, Stawicki S, Wu Y, Shatz C, et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 2008, 322: 967–970.

    Article  CAS  Google Scholar 

  9. Zheng B, Atwal J, Ho C, Case L, He XL, Garcia KC, et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci U S A 2005,102: 1205–1210.

    Article  CAS  Google Scholar 

  10. Kim JE, Liu BP, Park JH, Strittmatter SM. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 2004, 44: 439–451.

    Article  CAS  Google Scholar 

  11. Takai T. Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology 2005, 115: 433–440.

    Article  CAS  Google Scholar 

  12. Masuda A, Nakamura A, Maeda T, Sakamoto Y, Takai T. Cis binding between inhibitory receptors and MHC class I can regulate mast cell activation. J Exp Med 2007, 204: 907–920.

    Article  CAS  Google Scholar 

  13. Syken J, Grandpre T, Kanold PO, Shatz CJ. PirB restricts ocular-dominance plasticity in visual cortex. Science 2006, 313: 1795–1800.

    Article  CAS  Google Scholar 

  14. Cai X, Yuan R, Hu Z, Chen C, Yu J, Zheng Z, et al. Expression of PirB protein in intact and injured optic nerve and retina of mice. Neurochem Res 2012, 37: 647–654.

    Article  CAS  Google Scholar 

  15. Fujita Y, Endo S, Takai T, Yamashita T. Myelin suppresses axon regeneration by PIR-B/SHP-mediated inhibition of Trk activity. EMBO J 2011, 30: 1389–1401.

    Article  CAS  Google Scholar 

  16. Dickson HM, Zurawski J, Zhang H, Turner DL, Vojtek AB. POSH is an intracellular signal transducer for the axon outgrowth inhibitor Nogo66. J Neurosci 2010, 30: 13319–13325.

    Article  CAS  Google Scholar 

  17. Ruzafa N, Pereiro X, Lepper MF, Hauck SM, Vecino E. A proteomics approach to identify candidate proteins secreted by Müller glia that protect ganglion cells in the retina. Proteomics 2018, 18: e1700321.

    Article  Google Scholar 

  18. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res 2006, 25: 397–424.

    Article  CAS  Google Scholar 

  19. Weber AJ, Viswanáthan S, Ramanathan C, Harman CD. Combined application of BDNF to the eye and brain enhances ganglion cell survival and function in the cat after optic nerve injury. Invest Opthalmol 2010, 51: 327–334.

    Article  Google Scholar 

  20. Lambiase A, Tirassa PA, Micera A, Aloe L, Bonini S. Pharmacokinetics of conjunctivally applied nerve growth factor in the retina and optic nerve of adult rats. Invest Ophthalmol Vis Sci 2005, 46: 3800–3806.

    Article  Google Scholar 

  21. Cui ZL, Kang J, Hui YN, Hu D. Effects of CNTF and Ad-BDNF on survival of RGC after optic nerve injury. Int J Ophthalmol 2008, 8: 1130–1132.

    CAS  Google Scholar 

  22. Kobayashi W, Onishi A, Tu HY, Takihara Y, Matsumura M, Tsujimoto K, et al. Culture systems of dissociated mouse and human pluripotent stem cell–derived retinal ganglion cells purified by two-step immunopanning. Invest Ophthalmol Vis Sci 2018, 59: 776–787.

    Article  CAS  Google Scholar 

  23. Liu H, Wang W, Li X, Huang C, Zhang Z, Yuan M, et al. High hydrostatic pressure induces apoptosis of retinal ganglion cells via regulation of the NGF signalling pathway. Mol Med Rep 2019, 19: 5321–5334.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren Z, Yang M, Guan Z, Yu W. Astrocytic α7 nicotinic receptor activation inhibits amyloid-β aggregation by upregulating endogenous αB-crystallin through the PI3K/Akt signaling pathway. Curr Alzheimer Res 2019.16: 1–9.

    Google Scholar 

  25. Navneet S, Zhao J, Wang J, Mysona B, Barwick S, Ammal Kaidery N, et al. Hyperhomocysteinemia-induced death of retinal ganglion cells: The role of Müller glial cells and NRF2. Redox Biol 2019, 24: 101199.

    Article  CAS  Google Scholar 

  26. Cen LP, Liang JJ, Chen JH, Harvey AR, Ng TK, Zhang M, et al. AAV-mediated transfer of RhoA shRNA and CNTF promotes retinal ganglion cell survival and axon regeneration. Neuroscience 2017, 343: 472–482.

    Article  CAS  Google Scholar 

  27. Guimarães RPM, Landeira BS, Coelho DM, Golbert DCF, Silveira MS, Linden R, et al. Evidence of Müller glia conversion into retina ganglion cells using neurogenin2. Front Cell Neurosci 2018, 12: 410–425.

    Article  Google Scholar 

  28. Lindenau W, Kuhrt H, Ulbricht E, Körner K, Bringmann A, Reichenbach A. Cone-to-Müller cell ratio in the mammalian retina: a survey of seven mammals with different lifestyle. Exp Eye Res 2019, 181: 38–48.

    Article  CAS  Google Scholar 

  29. Xu Z, Fouda AY, Lemtalsi T, Shosha E, Rojas M, Liu F, et al. Retinal neuroprotection from optic nerve trauma by deletion of arginase 2. Front Neurosci 2018, 12: 970.

    Article  Google Scholar 

  30. Kamalden TA, Ji D, Osborne NN. Rotenone-induced death of RGC-5 cells is caspase independent, involves the JNK and p38 pathways and is attenuated by specific green tea flavonoids. Neurochem Res 2012, 37: 1091–1101.

    Article  CAS  Google Scholar 

  31. Zhou JX, Liu YJ, Chen X, Zhang X, Xu J, Yang K, et al. Low-intensity pulsed ultrasound protects retinal ganglion cell from optic nerve injury induced apoptosis via yes associated protein. Front Cell Neurosci 2018, 12: 160.

    Article  Google Scholar 

  32. Jia M, Wang X, Zhang H, Ye C, Ma H, Yang M, et al. MicroRNA-132 in the adult dentate gyrus is involved in opioid addiction via modifying the differentiation of neural stem cells. Neurosci Bull 2019, 3: 486–496.

    Article  Google Scholar 

  33. Zeng Y, Shen Y, Hong L, Chen Y, Shi X, Zeng Q, et al. Effects of single and repeated exposure to a 50-Hz 2-mT electromagnetic field on primary cultured hippocampal neurons. Neurosci Bull 2017, 33: 299–306.

    Article  CAS  Google Scholar 

  34. Ohlmann A, Tamm ER. Norrin: molecular and functional properties of an angiogenic and neuroprotective growth factor. Prog Retin Eye Res 2012, 31: 243–257.

    Article  CAS  Google Scholar 

  35. Han Y, Amin HM, Franko B, Frantz C, Shi X, Lai R. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood 2006, 108: 2796–2803.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81470630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Guo Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, R., Yang, M., Fan, W. et al. Paired Immunoglobulin-like Receptor B Inhibition in Müller Cells Promotes Neurite Regeneration After Retinal Ganglion Cell Injury in vitro. Neurosci. Bull. 36, 972–984 (2020). https://doi.org/10.1007/s12264-020-00510-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00510-w

Keywords

Navigation